Supplementary effect of concentrate feed on the performance and nutrient digestibility of Cane-Rats (*Thryonomys Swinderianus*) fed a basal diet of Elephant Grass (*Pennisetum purpureum*)

Taiwo A.A., J.O. Fayenuwo, A.J. Omole, A.K. Fajimi, J.B. Fapohunda* and E.A. Adebawale
Institute of Agricultural Research and Training, (IAR&T), Obafemi Awolowo University, P.M.B. 5029, Moor Plantation, Ibadan, Nigeria.

Corresponding Author E-mail: bttaiwo@excite.com

Abstract

A study was conducted to determine the effect of concentrate supplementation on performance and nutrient digestibility in Cane-Rats/grasscutters. There were initially three treatments; 0%, 10% and 20% concentrate supplementation on as fed basis to a basal elephant grass diet. Fifteen weaned cane-rats with average body weight of 1150g (±365.40) were randomly assigned to the three treatments based on weight and sex. The growth study was conducted for eight weeks. A nutrient digestibility study was also conducted using three grasscutters per treatment. The cane-rats fed 20% supplementary concentrate gained more weight than those offered 10% concentrate feed. Crude protein was better (P<0.05) digested by cane-rats on 20% concentrate feed whereas, ash and ether extract digestibility were better on 10% concentrate feed. The 0% concentrate treatment was terminated because three of the cane-rats (66% mortality) died within three weeks of the study. It is recommended from this study that cane-rat fed a basal grass diet should be supplemented with 20% concentrate feed on as fed basis.

Key words: Grasscutter/cane-rat, performance, nutrient digestibility.

Introduction

Cane-rat (*Thryonomys swinderianus* Temminck) meat is a culinary delicacy readily relished by the people both in the rural and urban communities in Nigeria and the entire West African countries. This is because the meat “bush meat” is socially acceptable by the different ethnic, cultural and religious groups (Ajayi and Tewe 1980). Cane-rat meat has good nutritional qualities: high quality animal protein, low fat,
high dressing percentage and good/unique taste (Fayenuwo et al 2003; Olomu et al 2003). The meat of cane-rat is more nutritious than meat from most domesticated animals except poultry (Ajayi and Tewe 1980). Infact, the meat is highly prized and sought after. It is readily sold for money by people living in the rural areas where it is obtained.

However, cane-rat meat is mainly obtained by hunting and trapping of the animals. This does not ensure steady and regular supply of the meat. It atimes involves bush burning in order to smoke out the animals from their hidings. This has its attendant problems of damage/destruction of valuable plants, animal life and the ecosystem. Thus, there is the need to domesticate the animal in order to avoid the ill effects of bush burning and ensure regular supply of cane-rat meat.

Nevertheless, domestication of cane-rat has its own teething problems. These include the need to provide regular supply of feeds rich and balanced in nutrients. It has been observed (that grasscutters normally prefer grasses (such as elephant grass, sugar cane, guinea grass e.t.c) with succulent stalk (Fayenuwo et al; 2003). However, grasscutters reared in captivity on forages/grasses alone does not do well compared to those living in the wild. This is because they normally obtain balanced nutrients from a variety of feeds such as grasses/forages, tubers, grains, nuts, herbs e.t.c in their natural habitat or in the wild.

Therefore, there is the need to supplement the basal grasses/forages that cane-rats are fed on with concentrate feeds. Studies with other species of livestock have demonstrated the positive effect of supplementary concentrate feeding. It has been reported that supplementation of the natural grazing of Bunaji cattle with agro-industrial by-products (such as maize offals, palm kernel cake and dried brewers grains) resulted in improved daily weight gain, body condition score and high milk yield (Olafidehan and Adewummi 2007; Olafidehan et al 2007). Also, improved body weight gain and carcass yield have been recorded in rabbits fed sweet potato forage supplemented with concentrate diet as compared to forage only (Shorem, 2001).

There is paucity of information on the effect of supplementary concentrate feed on the performance of cane-rat fed basal grass diet. Therefore, the objectives of the study were to investigate the supplementary effect of concentrate feed on the performance and nutrient digestibility of cane-rats in captivity.

Materials and Methods

The experiment was carried out at the Cane-rat Unit of the Institute of Agricultural Research and Training, Ibadan during the rainy season between July and September, 2006. Fifteen weaned cane-rats of mixed sexes, purchased from a private farm in Ibadan were used for the study. They were randomly assigned to three dietary treatments on the basis of sex and body weight. The average body weight of the animals was 1150g (±365.40). There were five animals per treatment and each animal served as a replicate. Each animal was placed in an appropriate plastic
basket with cover and weighed at the beginning of the study and weekly thereafter using a Salter scale to determine body weight changes.

The three dietary treatments were:

Treatment 1: Elephant grass *Pennisetum purpureum* only as basal diet.
Treatment 2: Elephant grass plus 10% concentrate feed.
Treatment 3: Elephant grass plus 20% concentrate feed on ad libitum basis.

However, treatment 1 was deleted when three of the animals on it died at the third week of the experiment. The remaining two animals on treatment 1 were re-assigned to treatments 2 and 3 to make six animals per treatment.

The animals were housed individually in well ventilated cages with wooden frame and the inside lined with wire mesh. This was to prevent the animals from eating the wood. Separate feed and water troughs were provided. Each cage had dimension of 0.5m, 0.4m, 0.4m, for its length, width and height respectively. The cages were placed in a standard concrete animal house that offered complete protection to the animals from rainfall, direct rays of the sun and predators.

Elephant grass wilted overnight and chopped to between 10-15cm was offered to the animals in the morning. These were placed on the floor of the cage and concentrate feed was offered in the afternoon in addition to the grass to the supplemented groups in ceramic troughs. The concentrate diet was pelleted and comprised the following (%): maize: 36.20, wheat offal: 25.00, palm kernel cake: 12.00, maize bran: 14.00, groundnut cake: 7.00, soyabean meal: 3.55, fishmeal: 0.50, bone meal: 1.25, salt: 0.25 and grower’s vitamin mineral premix: 0.25. The diet was formulated to contain 16% crude protein and metabolizable energy of 2598 Kcal/kg. The grass was offered *ad libitum* while animals on treatments 2 and 3 had concentrate diet at 10 and 20% of the grass offered on ad libitum basis.

Water was offered *ad libitum* to the animals in ceramic troughs. The left over of the grass mainly the stalk, concentrate feed and water were weighed/measured the following morning. These were subtracted from quantities offered in order to calculate intakes.

The growth study conducted for eight weeks was preceded by a two week adjustment period to the feeding regime and the experimental conditions. Digestibility trial was also conducted. Three cane-rats per treatment were used for the study. Total collection of feaces was done in the cages with suitable collection trays/drawers underneath them for four days. The remnant feed was carefully removed from the feaces to avoid contamination.

Parameters measured included grass, concentrate and water intakes, body weight changes, and nutrient digestibility. Feed conversion ratio was derived from feed intake and weight gain.

Samples of the grass, concentrate and feaces were analyzed for proximate composition using appropriate methods (A.O.A.C., 1990). Calcium and phosphorus contents of the samples were also analysed (A.O.A.C., 1990).
Effect of concentrate feed on cane rats

Statistical analysis of the data generated was initially planned to be done by analysis of variance technique. However, it was carried out using T-test (Steel and Torrie, 1980) when treatment 1 was deleted and there were only two treatments remaining.

Results

The proximate, calcium and phosphorus contents of elephant grass (*Pennisetum purpureum*) and the supplementary concentrate feed offered to cane-rats are shown in Table 1. The grass contained more crude fibre, ash, ether extract and phosphorus than the concentrate feed. However, the supplementary concentrate feed had higher levels of dry matter, crude protein, nitrogen free extract and calcium.

Table 2 shows the performance characteristics of cane-rats fed elephant grass (*Pennisetum purpureum*) supplemented with concentrate feed. Cane-rats offered 10% supplementary concentrate feed to a basal diet of elephant grass consumed more grass but not significantly (P>0.05) more than those fed on 20% concentrate feed (132.77, versus 123.37g respectively). However, those on 20% concentrate feed had higher (P<0.05) concentrate intake than the 10% supplemented concentrate group (55.97 versus 37.96g respectively). On dry matter basis, the 10% supplementary concentrate groups consumed 77.77% grass and 22.23% concentrate while the 20% supplementary group took 68.7% grass and 31.3% concentrate feed. There was also significant difference (P<0.05) in the grass plus concentrate intake between the two groups with the 20% concentrate group having higher intake (179.33g/animal/day). Cane-rats fed 20% supplementary concentrate on as fed basis gained more weight and consumed less water (P<0.05) than those offered 10% concentrate feed on as fed basis. Also, the 20% concentrate group utilized the feed more efficiently (30.14) (P<0.05) than the 10% supplementary concentrate group (39.80). No mortality was recorded in the supplemented groups, whereas the elephant grass only group

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Elephant grass</th>
<th>Concentrate feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>40.82 ± 13.60</td>
<td>87.27 ± 0.62</td>
</tr>
<tr>
<td>Crude protein</td>
<td>8.76 ± 0.88</td>
<td>17.94 ± 1.31</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>27.00 ± 1.00</td>
<td>10.00 ± 1.00</td>
</tr>
<tr>
<td>Ash</td>
<td>7.50 ± 1.50</td>
<td>6.00 ± 2.00</td>
</tr>
<tr>
<td>Ether extract</td>
<td>6.50 ± 0.05</td>
<td>2.50 ± 0.50</td>
</tr>
<tr>
<td>Nitrogen free extract</td>
<td>50.25 ± 1.13</td>
<td>63.56 ± 0.81</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.36 ± 0.01</td>
<td>0.87 ± 0.01</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.48 ± 0.00</td>
<td>0.46 ± 0.10</td>
</tr>
</tbody>
</table>
Table 2: Performance characteristics of cane rats fed elephant grass (*P. maximum* ssp. *pseudoparvum*) supplemented with concentrate feed.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Food intake DM basis (g/animal/day)</th>
<th>Grains*</th>
<th>Weight changes</th>
<th>Feed efficiency</th>
<th>Water intake minimal/day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grass</td>
<td>Concentrate</td>
<td>Grass</td>
<td>Concentrate</td>
<td>concentrate</td>
</tr>
<tr>
<td>T2: 10%</td>
<td>132.73 ± 11.94</td>
<td>37.90± 3.92</td>
<td>170.73± 13.79</td>
<td>4.29±</td>
<td>39.80±</td>
</tr>
<tr>
<td>Supplementary</td>
<td>concentrated feed %</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>DM consumed</td>
<td>(77.77%)</td>
<td>(22.23%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>T3: 20%</td>
<td>123.37 ± 14.22</td>
<td>55.97± 5.87</td>
<td>179.33 ± 19.03</td>
<td>5.95±</td>
<td>30.14±</td>
</tr>
<tr>
<td>supplementary</td>
<td>concentrate feed %</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>DM consumed</td>
<td>(68.79%)</td>
<td>(31.21%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
</tbody>
</table>

suffered three mortalities or 60% mortality within three weeks of the study before the treatment was terminated.

The nutrient digestibility values of cane-rats fed on elephant grass supplemented with concentrated feed are shown in Table 3. There exist significant differences (*P*<0.05) in the crude protein, ash and ether extract digestibilities in the two supplemented groups.

Crude protein was significantly (*P*<0.05) digested by cane-rats on 20% supplementary concentrate feed whereas ash and ether extract digestibilities were better on 10% supplementary concentrate feed. However, there were no significant differences (*P*>0.05) in the dry matter, crude fibre, nitrogen free extract, calcium and phosphorus digestibility values between the 10% and 20% supplementary concentrate feeds (Table 3).

Discussion

The crude protein, crude fibre and nitrogen free extract contents of elephant grass used in this study are similar to those reported in another study where dried, and milled elephant grass was used in feeding grasscutter (*Wogar et al* 2007a). However, the ether extract and ash contents of the grass in the two studies differed. Also, the crude protein and ash contents of the supplementary concentrate feed in this study are similar to that used in supplementary forages fed to weaned rabbits (*Taiwo et al* 2005).

The feed intake recorded in this study was higher than those recorded in weaned rabbits with
Effect of concentrate feed on cane rats

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Dry matter Digestibility</th>
<th>Crude protein digestibility</th>
<th>Crude fibre digestibility</th>
<th>Ash Digestibility</th>
<th>Ether extract digestibility</th>
<th>NFE Digestibility</th>
<th>Calcium Digestibility</th>
<th>Phosphorus digestibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2: 10% supplementary concentrate feed</td>
<td>90.88</td>
<td>80.85</td>
<td>86.80</td>
<td>83.63*</td>
<td>66.22*</td>
<td>98.79</td>
<td>78.68</td>
<td>80.10</td>
</tr>
<tr>
<td>T3: 20% supplementary concentrate feed</td>
<td>90.88</td>
<td>86.68*</td>
<td>87.49</td>
<td>81.46*</td>
<td>63.90*</td>
<td>97.64</td>
<td>78.67</td>
<td>79.62</td>
</tr>
<tr>
<td>Statistical significance</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

The mean final liveweight of about 1300g, that were fed forages (Taiwo et al 2005) and in growing rabbits fed on rabbit meal and chloris grass (Iyege-Erakpotobor et al 2003). On the contrary, high concentrate and grass intakes were recorded in grasscutter with average final liveweight of 1350g compared with this study (Wogar et al 2007b).

The higher concentrate intake recorded in the 20% supplementary concentrate feed compared to the 10% level can be explained by the higher quantities offered to the grasscutters. This also positively influenced the overall feed intake (grass plus concentrate that was significantly higher (P<0.05) in the 20% supplementary concentrate treatment compared to the 10% concentrate treatment. The animals would want to eat to satisfy their nutrient requirement since the feed is rich in nutrients with about 17% crude protein level. The concentrate feed consumed by grasscutter on the 20% supplementary concentrate feed partly substituted for the grass intake. Thus, a slightly lower grass intake was recorded in the 20% as compared to the 10% supplementary concentrate feed treatment.

The higher feed intake recorded on the 20% supplementary concentrate treatment also translated to a higher weight gain compared to the 10% concentrate treatment. The weight gain observed in this study are however lower than the daily weight gain range of 9.35 – 10.83g recorded elsewhere (Wogar et al 2007a) where grasscutters were fed with a minimum of 22.4% crude protein where fermented and milled elephant grass replaced between 0-50% fermented cassava meal in the rations of the animals.

Grasscutters fed on 10% concentrate feed as supplement to elephant grass in this study however had comparable weight gain (4.29 versus 4.41g) to grasscutters elsewhere (Wogar
et al 2007b) where elephant grass (*Pennisetum purpureum*) was fed alongside a 24% energy-protein supplement to the animals.

No mortality was recorded in the 10% and 20% concentrate feed treatments. However, 60% of the grasscutters initially on treatment 1, grass only diet died within three weeks of the commencement of the study. The deaths were not due to any disease from veterinary reports. When the two animals remaining on this treatment were reassigned to the other treatments, no mortality was suffered. This goes to show that the grass diet alone was inadequate to meet the minimum requirement of the animals in captivity thus leading to their death on treatment 1. This assertion is corroborated by the report of a farmer that lost two out of five of his grasscutters kept in captivity when he could not feed them supplementary concentrate at all for a period of seven days.

Conclusion

Cane-rat should not be fed grasses alone without concentrate feed as 60% of the animals on elephant grass diet alone died. Cane-rats fed on 20% supplementary concentrate feed performed better in terms of weight gain, feed efficiency and crude protein digestibility than those offered 10% concentrate feed as fed basis. Therefore it is recommended that cane-rats/grasscutters in captivity should be offered 20% supplementary concentrate feed in addition to basal diet of elephant grass for better performance.

References

Effect of concentrate feed on cane rats

(Received 13th October 2008, Accepted 15th Jan. 2009)