Response of broilers to three different commercial feeds

*1 Olajide, R., 2 Kareem, A. O. and 3 Afolabi, K. D.

¹Department of Animal Production and Health, University of Africa, Toru-Orua, Bayelsa State, Nigeria

²Department of Animal Science and Production, Joseph Ayo Babalola University,
Ikeji-Arakeji, P.M.B. 5006, Ilesa, Osun State, Nigeria

³Department of Animal Science, University of Uyo, Uyo,
Akwa Ibom State, Nigeria

*Corresponding author: rotimi.olajide@uat.edu.ng; +2348035199681

Poultry farmers who rely on commercial feeds sourced from the market always suffer some forms of financial loss due to sub-standard nature of such feeds. The normal practice is to formulate a balanced diet and compound the feeds with good quality ingredients. These conditions are not always within the control of the farmers who rely on buying finished feeds from the market. There is dearth of information on the quality of these common types of feeds in the market with the aim of recommending the best to the farmers. This study was therefore, carried out to examine the response of broilers to three commercial feeds at the starter and finisher phases. One hundred and eighty 1-day-old unsexed Marshal broilers at three replicates of twenty birds each were used for the study; and lasted for eight weeks. Feed and water were supplied ad libitum. The performance, carcass, haematological and biochemical parameters of the experimental birds were measured. The three diets were tagged Diets 1, 2 and 3 each representing a treatment. The average final live weight (AFLW), daily weight gain (ADWG), daily feed intake (ADFI) and feed conversion ratio (FCR) were significantly (P < 0.05) influenced by the feed types (dietary treatments). The highest AFLW (758.37g/b) was obtained for broiler starters fed Diet 2 compared to 689.60g/b (Diet 1) and 263.37g/b (Diet 3). The ADWG followed the same trend with birds fed Diet 2 having the highest value (25.67g/b) compared with 23.22g/b (Diet 1) and 8.00g/b (Diet 3). The ADFI (starters) were 72.88, 80.36 and 62.20g/b respectively for birds fed Diets 1, 2 and 3. The corresponding ADFI (g/b/d) for the finishers were 133.63 (Diet 1), 177.53 (Diet 2) and 58.57 (Diet 3); and ADWG (g/b/d) 42.49 (Diet 1), 51.79 (Diet 2) and 8.57 (Diet 3). Diet 2 gave the best performance in terms of weight gain, followed by Diet 1 and Diet 3 in that order for the finishers. However, the average cost per kg weight gain of the birds for the 2 phases were ₹307.88 (Diet 1), ₹309.29 (Diet 2), and ₹582.74 (Diet 3). All the carcass (live weight, bled weight, plucked weight, eviscerated weight, dressed weight and abdominal fat); and internal organs such as heart, lung, liver, kidney, pancreas, intestine and proventriculus were significantly (P < 0.05) affected by dietary treatments. The RBC, Hb, Basophils, total protein, albumin and globulin differed significantly (P < 0.05) across the diets. It can be concluded that birds fed Diet 1 gave the best overall economic, carcass, haematology and serological performance. Commercial Diet (feed) 1 is therefore recommended for broiler farmers.

Keywords: Broilers, performance, commercial feeds, haematology, serology

Introduction

High cost of igredients used to compound livestock feeds is contributing to cutting corners by some commercial feed millers. In some instances, feeds are formulated such that the nutrients are not sufficient to meet the nutritional requirements of the stock for which it was formulated. Erratic changes in price of feed materials constantly force feed manufacturers to change formula used to produce feed in order to maintain reasonable gross margin (Edache *et al.*, 2018). The quality of the ingredients may also be sub-standard (low

quality ingredients) to compound feeds. Livestock farmers who rely on these feed millers for the supply of their feeds may suffer some losses in terms of sub-optimal performance of the animals fed with such feeds. In order to avoid this, it is necessary to call the attention of farmers to availability of sub-standard feeds in the market. This information could be sourced from results of research works. Olajide and Adeleye, (2015) monitored the performance, carcass and blood indices of broilers started with super starter and or starter diet of a particular type of commercial feed. The duo concluded that feeding broilers with the starters for four weeks and finishers for four weeks was economical than using broiler super starter. Since animals are the best judge of feeds, there is the need to investigate the performance of broilers fed the commonly available three commercial feeds in the study area. This was done through holistic investigation of the performance, carcass, organs and blood indices of the experimental birds.

Materials and methods Experimental site

This study was carried out at the Poultry Unit of the Teaching and Research Farm, Joseph Ayo Babalola University, Ikeji-Arakeji, Osun State, Nigeria. Ikeji-Arakeji is situated on 350.52m above sea level at latitude 7° 25'N and at longitude 5° 19'E. The vegetation of the area is that of the rainforest characterized by hot and humid climate. The mean annual rainfall is 1500mm and the rain period is bimodal with a short break in August with mean annual relative humidity of 75% and mean temperature of 26-28° C (Laoye, 2014).

Experimental birds and management

One hundred and eighty 1-day-old unsexed Marshal broilers used for this study were purchased from a reputable Hatchery in Ibadan, Oyo State, Nigeria. There were sixty birds randomly distributed into each of the diets, with each feed representing a treatment. There were three replicates of twenty birds each in a completely randomized design (CRD) experiment. The birds were raised on deep litter pen earlier washed, disinfected; with wood shaving as litter material. Feed and water were supplied *ad libitum* throughout the period of the study. The vaccination and medication schedules were strictly followed.

Experimental diets

Three types of freshly supplied Commercial feeds (starters and finishers) were used for this study which lasted for eight weeks; the first four weeks as starter and the next four as finisher. The feeds were tagged Diets 1, 2 and 3 each representing a treatment, respectively for the two phases of broiler production.

Data collection

Growth performance

Data were collected on the growth performance including average initial live weight, average final live weight, average daily weight gain and average daily feed intake. The last 2 parameters were used to compute the feed conversion ratio, as average daily feed intake divided by average daily weight gain. The cost per kg feed was obtained from the price of 25 kg bag feed; and this was subsequently used to calculate the cost of feed consumed to produce a kg live weight.

Carcass and organ evaluation

At the end of the 8th week feeding trial, a total of 45 birds (15 birds/diet) at the rate of five birds per replicate were randomly selected for carcass and organ parameters evaluation. The birds were starved overnight to minimize the contents of the gastro-intestinal tract. The fasted live weight of the birds was recorded before slaughter. The birds were slaughtered by severing the jugular vein, thoroughly bled and scalded by immersion in warm water with temperature ranges from 52 -55 °C for about two minutes before defeathering. The

bled, plucked, eviscerated and dressed weights were taken at different stages of processing. The organs (heart, lung, liver, kidney, pancreas, intestine and proventriculus) were expressed as percentage of carcass. Carcass parts were also calculated as percentage of live weight.

Haematological and serological parameters evaluation

A total of twenty-seven randomly selected birds (nine birds per diet) were bled via the jugular vein in order to collect blood for haematological and serological indices evaluation. Blood samples for haematological parameters were collected into bottles pre-treated with Ethylene Diamine Tetra Acetic acid (EDTA), an anticoagulant. Blood samples for serological analysis were collected into another sample bottles containing no EDTA. The ESr, RBC, Hb, lymphocytes, neutrophils, monocytes, basophils and eosinophils were investigated. Total protein, albumin, globulin and glucose were also monitored.

Chemical analysis

Proximate determination of the test diets

was according to the method of AOAC, (2005). The ME was calculated according to procedure of Pauzenga (1985) as:

ME (kcal/kg DM) = 37 x % Protein + 81.8 x % Fat + 35.5 x NFE

Statistical analysis

Mean of the data collected were subjected to analysis of variance using SAS statistical package, SAS (2001); and the treatment means compared using Duncan option of the software.

Results

The proximate composition of the experimental starter and finisher diets are presented in Table 1. The percentage crude protein (CP) of the starter diets were 22.05 (D1), 24.15 (D2) and 18.90 (D3). The crude fibre (CF) were 4.00% (D1), 4.00% (D2) and 5.00% (D3). The ME (kcal/kg DM) were 3155.10, 3485.74 and 2848.03. The finisher diets had CP of 20.49, 20.84 and 17.81% respectively for D1, D2 and D3. The corresponding CF were 5.98, 5.64 and 9.12 %. The ME in the same order were 2835.03, 2868.37 and 2500.73 kcal/kg DM.

Table 1: Proximate composition of the experimental starter and finisher diets

Parameters		Starter Diets			Finisher Diets		
	1	2	3	1	2	3	
Dry Matter (%)	89.12	89.50	88.95	91.84	91.72	90.85	
Crude Protein (%)	22.05	24.15	18.90	20.49	20.84	17.81	
Ether Extract (%)	7.00	6.78	6.50	8.30	8.41	7.66	
Crude Fibre (%)	4.00	4.00	5.00	5.98	5.64	9.12	
Ash (%)	6.00	7.00	13.00	17.67	17.13	22.03	
NFE (%)	49.93	52.43	45.55	39.40	39.70	34.23	
ME (kcal/kg DM)	3155.10	3485.74	2848.03	2835.03	2868.37	2500.73	

NFE = Nitrogen Free Extract; ME = Metabolisable Energy

Performance characteristics of the experimental birds at the starter phase are presented in Table 2. The average final live weight (AFLW), daily weight gain (ADWG), daily feed intake (ADFI) and feed conversion ratio (FCR) were significantly (P < 0.05) influenced by the feed types (dietary treatments). The highest AFLW (758.37g/b) was obtained for birds fed Diet 2 compared to 689.60g/b (Diet 1) and 263.37g/b (Diet 3). The ADWG

followed the same trend with birds fed Diet 2 having the highest value (25.67g/b) compared with 23.22g/b (Diet 1) and 8.00g/b (Diet 3). The ADFI were 72.88, 80.36 and 62.20g/b respectively for birds fed Diets 1, 2 and 3. Cost of feed per kg live weight were ε 332.84 (D1), ε 313.00 (D2) and ε 684.64 (D3). Average initial live weight already balanced was not affected (P > 0.05) accross the Diets. Diet 2 gave the best performance in terms of weight gain,

Response of broilers to three different commercial feeds

followed by Diet 1 and Diet 3 in that order. All the performance parameters at the finishing phase though significantly (P < 0.05) different except cost of feed/kg live weight gain, followed the trends at the starters (Table 3). The AFLW (g/b) were 2208.49 (D2), 1879.32 (D1) and 503.33 (D3); and ADWG (g/b/d) were 51.79 (D2), 42.49 (D1) and 8.57 (D3). The ADFI (g/b/d) were 177.53 (D2), 133.63 (D1) and 58.57

(D3). The FCR values were 3.14, 3.43 and 6.83 respectively for birds fed Diets 1, 2 and 3. The lowest cost of feed per kg live weight gain №282.91 obtained in birds fed Diet 1 compared with №305.58 and №480.83 respectively for birds fed diets 2 and 3 at the finisher phase. The average cost of feed per kg live weight gain for the 2 phases were №307.88 (D1), №309.29 (D2), and №582.74 (D3).

Table 2: Performance characteristics of broiler starters fed three different commercial diets

Parameters	1	2	3	SEM
Average initial live weight (g/b)	39.50	39.50	39.50	0.36
Average final live weight (g/b)	689.60 ^b	758.37 ^a	263.37°	28.48
Average daily weight gain (g/b/d)	23.22 ^b	25.67 ^a	8.00°	2.11
Average daily feed intake (g/b/d)	72.88 ^b	80.36^{a}	62.20°	6.69
Feed conversion ratio	3.14 ^b	3.13 ^b	7.78^{a}	0.98
Counting load (M)	106.00	100.00	88.00	NSA
Cost of feed/kg weight gain (E)	332.84	313.00	684.64	NSA

abc Means within the same row with different superscripts differ significantly (P< 0.05)

SEM = Standard Error of the Mean; NSA = Not statistically analysed

Table 3: Performance characteristics of broiler finishers fed three different commercial diets

Parameters	1	2	3	SEM
Average initial live weight (g/b)	689.60 ^a	758.37 ^a	263.37 ^b	28.48
Average final live weight (g/b)	1879.32 ^b	2208.49a	503.33°	54.76
Average daily weight gain (g/b/d)	42.49 ^b	51.79 ^a	8.57°	2.45
Average daily feed intake (g/b/d)	133.63 ^b	177.53a	58.57°	6.89
Feed conversion ratio	3.14 ^b	3.43 ^b	6.83 ^a	0.96
Cost/kg feed (€)	90.10	89.09	70.40	NSA
Cost of feed/kg weight gain (E)	282.91	305.58	480.83	NSA

abc Means within the same row with different superscripts differ significantly (P< 0.05)

SEM = Standard Error of the Mean; NSA = Not statistically analysed

Table 4 shows the carcass and organ characteristics of the experimental birds. All the carcass (live weight, bled weight, plucked weight, eviscerated weight, dressed weight and abdominal fat); and internal organs such as heart, lung, liver, kidney, pancreas, intestine and proventriculus were significantly (P < 0.05) affected by dietary treatments. The live weight (kg/b) were 1.93 (D1), 1.75 (D2) and 0.55 (D3). The percentage bled weight of 97.35 (D1) and 97.14 (D2) were higher (P < 0.05) than 91.43 (D3). The plucked weight 92.05 (D1) and 92.81 (D2) were similar but both significantly (P <0.05) higher than 86.61 (D3). The

corresponding eviscerated weight, 77.28 (D1) and 81.54 (D2) were both significantly (P < 0.05) higher than 63.69 (D3). Percentage dressed weights were 71.21 (D1), 70.02 (D2) and 53.57 (D3); while the percentage abdominal fat was 1.36 (D1), 1.01 (D2) and 0.31 (D3). The highest percentage heart (0.82), lung (0.79), liver (4.42), kidney (0.80), pancreas (0.39), intestine (11.38), and proventriculus (0.73) were obtained in birds fed D3. These were significantly (P < 0.05) higher than 0.55, 0.54, 2.09, 0.58, 0.24, 6.82 and 0.40% (D2); and corresponding 0.58, 0.68, 2.19, 0.49, 0.23, 6.50 and 0.46% (D1).

Table 4: Carcass and organ characteristics of broiler chickens fed three different commercial diets

Parameters	1	2	3	SEM
Live Weight (g)	1.93ª	1.75a	0.55 ^b	0.10
Bled weight (%)	97.35a	97.14 ^a	91.43 ^b	2.35
Plucked weight (%)	92.05ª	92.81a	86.61 ^b	3.12
Eviscerated weight (%)	77.28 ^a	81.54 ^a	63.69 ^b	3.74
Dressed weight (%)	71.21 ^a	70.02 ^a	53.57 ^b	3.65
Abdominal fat (%)	1.36 ^a	1.01 ^a	0.31 ^b	0.08
Organs (% of carcass)				
Heart	0.58^{ab}	0.55^{b}	0.82a	0.03
Lung	0.68^{ab}	0.54 ^b	0.79^{a}	0.03
Liver	2.19 ^b	2.09^{b}	4.42a	0.11
Kidney	0.49°	0.58^{b}	0.80^{a}	0.05
Pancreas	0.23^{b}	0.24^{b}	0.39^{a}	0.01
Intestine	6.50^{b}	6.82 ^b	11.38a	0.88
Proventriculus	0.46^{b}	0.40^{b}	0.73a	0.04

abc Means within the same row with different superscripts differ significantly (P< 0.05)

Carcass cut parts of the experimental birds are presented in Table 5. The head, neck, drum stick, thigh, wings, breast, and lower back significantly (P < 0.05) differed across the treatments. The percentage values of the head were 2.62 (D1), 3.22 (D2) and 4.79 (D3); and the corresponding values of the neck were 5.09 (D1), 4.78 (D2) and 4.54 (D3). The drum sticks were

10.35 (D1), 11.49 (D2) and 9.92 (D3); and the thigh were 9.95 (D1), 10.87 (D2) and 9.71 (D3). Wings were 9.42 (D1), 10.62 (D2) and 9.94 (D3) with breast having 18.52 (D1), 17.45 (D2) and 12.12 (D3). The lower back values were 8.35 (D1), 7.65 (D2) and 6.53 (D3). However, variations obtained in the legs and upper back were similar (P > 0.05).

Table 5: Carcass cut parts of broiler chickens fed three different commercial diets (expressed as % live weight)

	Diets			
Parameters (%)	1	2	3	SEM
Head	2.62 ^b	3.22 ^b	4.79a	0.21
Neck	5.09 ^a	4.78^{ab}	4.54 ^b	0.66
Leg	4.96	5.91	6.47	0.78
Drum stick	10.35 ^b	11.49 ^a	9.92^{b}	0.69
Thigh	9.95 ^b	10.87 ^a	9.71 ^b	0.67
Wings	9.42 ^b	10.62a	9.94^{ab}	0.78
Breast	18.52ª	17.45a	12.12 ^b	0.97
Upper back	5.98	6.06	5.66	0.51
Lower back	8.35ª	7.65 ^{ab}	6.53°	0.45

abc Means within the same row with different superscripts differ significantly (P< 0.05)

Table 6 shows the haematological and serological parameters of the experimental birds. The RBC, Hb, Basophils, total protein, albumin and globulin differed significantly (P < 0.05) across the diets. The RBC (x 10^6 mm⁻³) values were 124.50 (D1), 199.50 (D2) and 74.50 (D3); and the Hb (g/dl) were 5.67 (D1), 8.67 (D2) and 4.67 (D3). Basophils (%) were 3.00 (D1),

2.00 (D2) and 2.00 (D3). Total protein (g/dl) were 33.89 (D1), 35.14 (D2) and 25.34 (D3). The albumin (g/dl) were 19.53 (D1), 19.22 (D2) and 13.75 (D3); and globulin (g/dl) 14.36 (D1), 15.92 (D2) and 11.59 (D3). The PCV, lymphocytes, neutrophils, monocytes, eosinophils, and glucose were not significantly (P < 0.05) affected by the diets.

SEM = Standard Error of the Mean

SEM = Standard Error of the Mean

Response of broilers to three different commercial feeds

Table 6: Haematology and serum biochemical indices of broiler chickens fed three different commercial diets

	Diets			
Parameters	1	2	3	SEM
Esr (mm/hr)	12.50	5.00	13.50	1.92
Packed cell volume (%)	17.00	26.00	16.00	2.40
Red blood cells (x 10 ⁶ mm ⁻³)	124.50 ^{ab}	199.50 ^a	74.50 ^b	17.79
Haemoglobin (g/dl)	5.67 ^{ab}	8.67a	4.67^{b}	0.85
Lymphocytes (%)	62.50	61.50	59.50	0.97
Neutrophils (%)	21.50	21.50	22.00	0.49
Monocytes (%)	11.50	13.00	12.00	0.65
Basophils (%)	3.00^{a}	2.00^{b}	2.00^{b}	0.17
Eosinophils (%)	1.50	2.00	1.50	0.14
Glucose (g/dl)	2.27	2.71	3.00	0.37
Total protein (g/dl)	33.89 ^b	35.14 ^a	25.34°	2.80
Albumin (g/dl)	19.53a	19.22a	13.75 ^b	2.01
Globulin (g/dl)	14.36 ^a	15.92a	11.59 ^b	2.03

 $^{^{}abc}$ Means within the same row with different superscripts differ significantly (P< 0.05)

SEM = Standard Error of the Mean

Discussion

The CP values of diet 3 at both the starter and finisher phases were lower than the conventionally accepted and recommended 23 and 20%. The same for the ME. The CF on the other hand were higher than 4 - 5%recommended for the two phases of growth of broilers (NRC, 1994). The best performance obtained in birds fed diet 2 (starters) could be linked to higher nutrient (CP) and energy content (ME); and lower crude fibre (CF) compared with birds fed the other 2 diets. This was followed by birds fed Diet 1, and the least performance in birds fed Diet 3. There is probability that the high CF in Diet 3 would have impaired digestibility, availability and utilization of other nutrients in the diet. This agrees with the submissions of previous authors (King et al., 2000; Baidoo et al., 2003; Safari et al., 2005; Longe, 2006; and Olajide et al., 2009). This is particularly so since the FCR values were highest for birds fed diet 3 at both phases. The lower the FCR the better. The energy-protein relationship may also be an important factor. The dietary energy and crude protein may individually be adequate but may be poorly adjusted such that this reduces the performance of the birds or causes deposition of fat in their carcasses. Olomu (1995) recommended

calorie: protein ratio of 150:1 for finisher diets in the tropics compared with 160:1 recommended for the temperate region by NRC, (1994). Results of the work of Tion et al. (2005) on broilers however showed that calorie: protein ratio as wide as 178: 1 can be gainfully utilized in Nigeria for finishing broilers to market weight of more than 2kg in 63 days. The final cost of a unit of product (meat or egg) depends on the cost of feed and how efficiently the nutrients were utilized (FCR). Diet 3 despite having the lowest cost per kg feed did not translate to optimal growth, compared with those birds fed Diets 1 and 2. Birds fed diet 1 had the best FCR and cost per kg live weight gain at the finisher phase though with lower ADWG than those fed diet 2. Birds fed a type of these Commercial feed gave FCR of 1.95 and 2.32; and ADWG of 26.13 and 58.08g/b respectively for starters and finishers (Olajide and Adeleye, 2015). The average cost per kg live weight gain of the birds for the 2 phases were N307.88 (Diet 1), N309.29 (Diet 2), and N582.74 (Diet 3). The mean live weight of the experimental birds used for carcass and organ analyses was reflection of the performance of the birds. The dismally low live weight, bled weight, plucked weight, eviscerated weight and more importantly the dressed weight obtained in birds fed Diet 3 were as a result of poor performance of these birds. These parameters were comparable for birds fed Diets 1 and 2. The adequacy of crude protein and energy, coupled with minimal crude fiber in Diets 1 and 2 could have contributed to the desirable carcass indices obtained in these birds. The lower values of eviscerated and dressed weights for birds fed Diet 3 could be as a result of lower CP. ME, and higher CF in the diet (Gardner 1971; Cecil 1991; Zaczek et al., 2003). Zaczek et al. (2003) observed that increasing concentration of fiber in diets have a negative linear effect on body weight. The blood volume 2.65% (D1) and 2.86% (D2) represented by the bled weight falls within the standard range of 2.50 – 6.50% reported for normal chickens (Mitruka and Rawnsley, 1977). However, the value (8.57%) obtained for birds fed D3 was higher. Highest values of all organs (heart, lung, liver, kidney, pancreas, intestine and proventriculus) obtained in birds fed Diet 3 was also pointing to very low live weight or carcass weight of these birds, since the organs were expressed as percentages of live weight. The inference that can possibly be drawn from heart, lung and pancreas is that these organs have to do with anatomical differences and live weight. The highest heart weight in birds fed Diet 3 could be as a result of extra workload imposed by stress of handling anti-nutrients including fibers, and digestibility (Carew et al., 2003). That the liver and kidney were also highest for these birds fed Diet 3 could point to the need to deal with some intrinsic factors including anti-nutritional factors. This may not be uncommon when feed millers would want to use any cheap available feed ingredients to formulate diets not minding the inherent anti-nutrients just to cut cost. Both organs are involved in biotransformation, assisting the birds to handle toxins and metabolic wastes (Onyevilli et al., 1998; Olajide and Adeniyi, 2015). High intestinal and proventriculus contents in birds fed Diet 3 may also suggest a lot of undigested feeds in the GIT. This could have been caused by high fiber content in this diet. This agrees with the submission of Olajide et al. (2009) that fibers in the diets affect digestibility of nutrients. In some cases, the proportion of the cut-up parts to the live weight may be anatomical. However, good values of breast/chest obtained in birds fed Diets 1 and 2 compared to Diet 3 were pluses for the first 2 diets. This is because this meaty part of the broiler is actually the saleable portion which command high price tag. High RBC and Hb values obtained in birds fed Diets 1 and 2 are desirable. This is because these two haematological indices are involved in transport of oxygen in animals' body. Low levels of these constituents may also impair respiration and likely to have bearing on size of the lung. Lower values of PCV, Hb, and total protein was linked to low level of nutrition especially protein deficiency (Oladele et al., 2001). Low PCV and RBC, anaemic conditions recorded in scavenging Nigerian indigenous chicken was also linked to poor nutrition (Ikhimioya et al., 2000). Meanwhile, the PCV (D2) was within and D1 closer to the range values recommended for normal chickens (Mitruka and Rawnsley, 1977) than D3. The RBC of birds fed D1 and D2 were also within 1.58 - 4.10 (x 10⁶mm⁻³) with that of D3 extremely below. The Hb of birds fed D1 and D2 were also close to 7.40 -13.10g/dl (Mitruka and Rawnsley, 1977) but D3 lower. However, lymphocytes and monocytes were within 43.90 - 81.20% and 15.60 - 43.90% respectively recommended. The Basophils were very close to 2.50 - 5.36% recommended for normal chickens. High protein and albumin values obtained in birds fed Diets 1 and 2 may also point to adequacy of this nutrient in these diets. The lowest absolute values of these serum indices in birds fed Diet 3, coupled with this same group of birds having the highest globulin (45.74% of total protein compared with 45.30% and 42.37%) for birds fed Diets 2 and 1. High globulin may be an indication of reaction to presence of antinutrients in the diet.

Conclusion

The study showed that birds fed diet 1 gave the best overall economic, carcass, haematology and serological performance. Commercial diet (feed) 1 is therefore recommended for broiler farmers.

References

- **AOAC, 2005.** Official methods of Analysis Association of official Analytical Chemist. 18th Eds. Washington, D.C.
- Baidoo, S. K., Yang, Q. M. and Walker, R. D. 2003. Effects of phytase on apparent digestibility of organic phosphorus and nutrients in maize soya bean meal based diets for sows. *Animal Feed Science and Technology* 104 (1-4): 295-304.
- Carew, L. B., Hardy, D., Weis, J., Alster, F., Misehler, S A., Gernat, A. and Zakrewska, E. I. 2003. Heating raw Velvet beans (Mucuna pruriensis) reverse some antinutritional effects on organ growth, blood chemistry and organ histology in growing chickens. *Trop. and Sub Trop. Agrosystems* 1:267-275.
- **Cecil, H. C. 1981.** Effect of dietary protein on body weight and reproductive performance of male turkeys. *Poultry Science* 60: 1049-1055.
- Edache, J. A., Tuleun, C. D., Yisa, A. G., Muduutai, U. R., Edache, D. O. and Mark, E. T. 2018. Performance of broiler chickens fed diets containing rice offal supplemented with enzyme.

- Nigerian Journal of Animal Production, 45 (4): 149–154.
- Gardiner, E. E. 1971. Relationship between energy phosphorus and breed on growing and laying periods on early egg weight and egg components. *Poultry Science* 74 (1): 50-61.
- Ikhimioya, I., Arijeniwa, A., Oteku, I. T. and Ahmed, A. 2000. Preliminary investigation on the haematology of the Nigerian indigenous chicken. Proceedings of the 5th Annual Conference of Animal Science Association of Nigeria (ASAN), Port Harcourt, Nigeria (Editors: Oji, U.I and Mgbere, O.O.) pp 10-12.
- King, D., Fan, M. Z., Ejeta, G., Asem, E. K. and Adeola, O. 2000. The effects of tannins on nutrient utilization in the white pekin duck. *British Poultry Science*, 41 (5): 630-639.
- Laoye, O. A. 2014. Performance, haematology and serum biochemical indices of three breeds of broiler starters. B.Sc. Dissertation, Department of Animal Science and Production, Joseph Ayo Babalola University, Ikeji Arakeji, Osun State.
- Longe, O.G. 2006. Poultry: Treasure in a chest. An inaugural lecture, University of Ibadan. Ibadan University Press Publishing House, University of Ibadan, Ibadan, Nigeria. Pp 1-42.
- Mitruka, B. M and Rawnsley, H. M. 1977.

 Clinical biochemical and hematological reference values in normal experimental animals.

 MassonPublishing USA Inc. New York.
- National Research Council (NRC) 1994.

 Nutrient Requirements of Poultry,

 9th Rev. Ed.

- National Academy Press, Washington D. C.
- Oladele, S. B., Ayo, J. O., Esievo, K. A. N. and Ogundipe, S. O. 2001.

 Seasonal and sex variations in packed cell volume, haemoglobin and total protein of indigenous ducks in Zaria Nigeria. *Journal of Tropical Biosciences*, 1 (1): 84 88.
- Olajide, R. and Adeleye, K. O. 2015.

 Performance, carcass and blood indices of broilers started with super starter and or starter diet.

 Nigerian Journal of Agricultural and Rural Management, 10 (1): 45

 –57.
- Olajide, R. and Adeniyi, O. A. 2015.

 Effect of Replacing Maize with Pride of Barbados (Delonix regia) seed meal on growth performance, carcass, serum and haematological indices of rabbits.

 Nigerian Journal of Animal Production, 42 (2): 94–102.
- Olajide R., Akinsoyinu A. O., Afolabi K. D., Owosibo, A. O., Fakolade P. O. and Akinleve, S. B. 2009. Digestibility of nutrients by Hybro broilers as affected by contents of anti-nutritional factors in wild cocovam corm-based diets. Proceedings of the 14th Annual Conference of Animal Science Association of Nigeria (ASAN), 14th – 17th September, 2009, Ladoke Akintola University of Technology (LAUTECH), (Editors: Akinlade, J. A.; Olayeni, T. B; Rafiu, T. A. Akinwunmi, A. O. Aderinola, O.A.; Ojebiyi, O. O. and Odunsi, A. A.) pp 202-205.

- Olomu, J. M. 1995. Nutrient requirement of broiler chickens as percentages or as milligrams or unit per kilograms diet. In: Monogastric Animal Nutrient; Principles and Practice Jachem Publication, pp 70.
- Onyeyilli, P. A., Iwuoha, C. L. and Akinniyi, J. A. 1998. Chronic toxicity study of *Fiscus platyphylla* blume in rats. *West African Journal of Pharmacology and Drug Research*, 14: 27-30.
- Pauzenga, U. 1985. Feeding Parent Stock.

 Zootecnica International,
 December; 22-24.
- Safari Sinegani A.A., Emtiazi, G., Hajrasuliha, S. and Shariatmadari, H. 2005. Biodegradation of some Agricultural Residues by Fungi In Agitated Submerged Cultures. A frican Journal of B8iotechnology, 4 (10): 1058 1061.
- SAS Institute 1999. SAS START R Users Guide: Statistics. Version 9 Edition. SAS Institute, Inc., Cary, North Carolina, USA.
- **Tion, M. A., Orga, M. T. and Adeka, I. A. 2005.** The effect of calorie to protein ratio of practical diets on performance and carcass quality of broiler chickens. *Nigerian Journal of Animal Production*, 32 (2): 253 260.
- Zaczek, V., Jones, E. K. M., Makloed, M. G., Hocking, P. M. 2003. Dietary fibre improves the welfare of female broiler breeders. *British Poultry Science*, 44: 530.

Received: 11th November, 2019 Accepted: 17th January, 2020