Protein supplements increased feed intake and enhanced growth of Yankasa sheep fed Congo grass (Brachiaria ruziziensis)

Sani, I., Amodu, J.T., Nuratu, A., Umar, A. M., Abubakar, M.

Department of Animal Production, Faculty of Agriculture and Agricultural Technology, Abubakar Tafawa Balewa University, Bauchi, Bauchi State, Nigeria.

National Animal Production Research Institute (NAPRI), Shika/A.B.U, Zaria

Correspondence: saniiibrahimnamei@yahoo.com; 08072448533, 08094607038

This study compared the feed intake and performance of Yankasa sheep fed Congo grass (Brachiaria ruziziensis) basal diet with different protein supplements of Cotton Seed Cake (CSC), Palm Kernel Cake (PKC), Brewer's Dried Grain (BDG) and sole B. ruziziensis grass (control). Sixteen (16) Yankasa sheep weighing between 21.63 and 22.23kg and aged about 12 months were randomly allotted to treatment diets. The total dry matter and crude protein intake were highest (P<0.05) in sheep on CSC supplement (996.33 and 118.56g) while the control diet had the least feed intake (796.4 and 57.90g). The total live weight gain (TLWG) increased (P<0.05) from 0.91kg in sheep fed Congo grass solely (control) to 2.50kg in those fed Cotton Seed Cake, while feed conversion ratio reduced from 52.50 in Congo grass to 29.15 in CSC treatment. It is concluded from this experiment that Yankasa sheep utilized CSC better than PKC, BDG and Brachiaria ruziziensis (control). It is therefore recommended that Brachiaria ruziziensis should be supplemented with Cotton Seed Cake at a rate of 250g/d for better intake and live weight in Yankasa sheep production.

Keywords: Yankasa sheep, Congo grass, CSC, PKC, BDG, Brachiaria ruziziensis

Introduction

One of the major constraints of small ruminant production in Nigeria is nutrition, in which feeding constitutes about 85% of total cost of production. Therefore, feeding strategies are needed in order to increase animal performance using tropical grasses (Eugene et al., 2010). Similarly, ruminants in the tropical and sub-tropical countries are likely to depend almost entirely on pasture and agricultural by-products of relatively poor nutritional status. Improvement in ruminant production will therefore require increased effort in investigating the different possible ways and means of upgrading poor roughages through increasing their digestibility and voluntary intake (Fadel, 2004). Cottonseed meal has long been a popular and economic protein concentrate for animal feeding. Cotton Seed Cake has some anti-nutritional and natural limiting factors that must be considered for safe use, chief among these factors are fibre level, trypsin inhibitor and the gossypol content (NCPA, 1990). These anti-nutritional factors readily undergo physical and chemical change when heated and have been found to be destroyed during processing. The complex processes of rumination and the microbial population of the rumen will efficiently handle any residue from such anti-nutritional factors (Oladotun et al., 2003). PKC is a medium grade protein feed and with its high fibre content it is often considered as suitable for feeding of ruminants. Its protein is highly degradable in ruminant animals. The nutritive value of PKC varies considerably based on source and methodology of oil removal. Earlier studies showed that cattle and buffaloes fed PKC as supplement resulted in improved growth (Jelan et al., 1991). Brewers' Dried Grain is a major by-product of brewing which in Nigeria is used
Protein supplements increased feed intake and enhanced growth of Yankasa sheep

as manure or disposed as waste. Preston et al. (1973) evaluated the energy value of BDG (78% TDN) for cattle and obtained a net energy value comparable to that of maize (80% TDN). Since Cotton Seed Cake, Brewer’s Dried Grain and Palm Kernel Cake are readily available and cheaper than other conventional protein sources, it is desirable to evaluate these products as major protein sources in the diets of ruminants. The objective of this study is to determine the feed intake and growth performance of Yankasa sheep fed Congo grass with protein supplements.

Materials and Method

Animals and their management

The study was conducted at SAJ Integrated Farms Limited, Kudungu, Shikazaria. Sixteen animals (16) comprising 8 males and 8 females were randomly allotted to 4 treatments diet with 4 animals per treatment (2 males and 2 females) in a Randomized Complete Block Design (RCBD) to block for sex. Sixteen (16) Yankasa sheep weighing between 18.5 and 21.5 kg and aged 9-12 months were used. Experimental animals were allowed 14 days to adjust to feed and confinement before the actual commencement of the experiment. During the adjustment period, the animals were de-wormed with Albendazole against internal parasites. The animals were fed supplements at 3% body weight, while Brachiaria ruzizensis hay, water and mineral salt lick were provided ad libitum.

The treatments diets were; Treatment 1 (grass ad libitum + Cotton Seed Cake 250g), Treatment 2 (grass ad libitum + Palm Kernel Cake 450g), Treatment 3 (grass ad libitum + Brewers Dried Grain 400g) and Treatment 4 (grass ad libitum only).

Growth study and data collection

Animals were kept in individual pens with sufficient ventilation. Each animal was offered supplement daily in 2 allocations, at 8:00 a.m and at 6:00 p.m. The supplements were fed 30 minutes before the basal feed was given and thereafter, the basal feed was fed ad libitum. The amount of water consumed by each animal daily was also measured and recorded.

Statistical analysis

Data collected was analyzed using Analysis of Variance (ANOVA) by General Linear Model (GLM) Procedure of Statistical Analysis System (SAS) version 9 (SAS, 2005). The treatment means were separated and compared using Duncan’s Multiple Range Test.

The model of the experiment is;

$$X_{ij} = \mu + \alpha_i + \beta_j + e_{ij}$$

Where $$X_{ij}$$ = Any observation, $$\mu$$ = Population mean, $$\alpha_i$$ = Treatment effect, $$\beta_j$$ = Block effect, $$e_{ij}$$ = Random error

Results and Discussion

Table 1: Chemical composition of experiment diets (%) fed to Yankasa sheep.

<table>
<thead>
<tr>
<th>Component (%)</th>
<th>B. ruziensis</th>
<th>BDG</th>
<th>PKC</th>
<th>CSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (%)</td>
<td>90.5</td>
<td>90.00</td>
<td>88.6</td>
<td>90.83</td>
</tr>
<tr>
<td>Crude protein</td>
<td>7.58</td>
<td>19.51</td>
<td>18.6</td>
<td>25.05</td>
</tr>
<tr>
<td>Ether extract</td>
<td>2.13</td>
<td>6.50</td>
<td>8.20</td>
<td>6.53</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>36.2</td>
<td>15.8</td>
<td>12.34</td>
<td>10.33</td>
</tr>
<tr>
<td>NFE</td>
<td>58.48</td>
<td>48.9</td>
<td>56.33</td>
<td>51.89</td>
</tr>
<tr>
<td>Ash</td>
<td>6.61</td>
<td>9.20</td>
<td>4.53</td>
<td>6.20</td>
</tr>
</tbody>
</table>

CSC = Cotton Seed Cake, BDG = Brewer Dry Grain, PKC = Palm Kernel Cake.

All the treatment diets were balanced for Crude protein to meet the minimum requirement of 14% CP for growing sheep (ARC, 1984)
Table 2 shows the Dry matter (DM) and other nutrients intake of Yankasa sheep fed Congo grass with different protein supplements. The total DMI from both grass and supplement was lowest (796.4g/day) for sheep on Congo grass and highest (996.33g/day) for animals on CSC supplement. The total dry matter intake (DMI) for animals on CSC, PKC, BDG were significantly different from each other (P<0.05). The total crude protein intake of 118.56g was significantly highest (P<0.05) for the animals on CSC followed by intake of animals on PKC supplement (97.28g), then those fed BDG supplement (90.34g) and lowest for those on the control diet (57.90g) respectively. The total crude fibre intake was significantly influenced by the treatment. The highest crude fibre intake (P<0.05) was recorded for animals on BDG (31.64g), which was followed by those on control (318.56g) which was significantly different from PKC (319.33g) while the lowest was recorded for animals on CSC (333.53g). According to Topps (1996), fibrosity of forages indicates the extent to which it can be degraded by rumen microorganisms. The highest total nitrogen free extract (NFE) intake (541.81g) was obtained in CSC group which subsequently declined to 523.03g in PKC and 476.08g in BDG group. B. ruziziensis had the lowest total NFE intake (426.62g). ARC (1984) reported that supplementation of protein based supplement enhances intake and growth performance.

In this experiment, protein intake for animals on CSC was the highest (118.56g) which was followed by PKC (97.28g) and this must have enhanced DMI in both treatments. The highest DMI of CSC supplementation (996.33g) and also 936.64g for PKC can be explained by the fact that CSC and PKC did not only provide essential nutrients to maintain optimal rumen activity but was also more rapidly degraded in the rumen. Low feed intake in animals on BDG (885.9g) could be as a result of low crude protein intake (90.34g) and higher fibre content of BDG (15.82%) while lowest intake in control was due to absent of supplement.

Supplementation of poor quality forages was reported to increase dry matter intake and performance of animals. The increase in dry matter intake by the sheep was due to increased protein intake as a result of protein supplementation which gave higher live weight gain (Ferdous et al., 2011). Also, Bailey and Sim (1998) reported a significant (P<0.05) increase in organic matter intake (OMI) of sheep supplemented with cotton seed meal than sheep fed only hay.

Daily water intake of experimental sheep is summarized in Table 1. The results of water intake (1.92-2.27litres) obtained in this study was similar in all the treatments and
within the range reported by NRC (2007) and Owen (1993) for water intake of rams under varying environments conditions.

Table 3: Performance of Yankasa sheep fed Congo grass with protein supplements

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Parameter</th>
<th>CSC</th>
<th>PKC</th>
<th>BDG</th>
<th>Congo grass</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight (kg)</td>
<td>21.63</td>
<td>22.23</td>
<td>22.19</td>
<td>22.19</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Final weight (kg)</td>
<td>23.68</td>
<td>24.13</td>
<td>23.7</td>
<td>23.1</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Total weight gain (kg)</td>
<td>2.50a</td>
<td>1.90b</td>
<td>1.65c</td>
<td>0.91d</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Daily weight gain (g)</td>
<td>41.7a</td>
<td>31.7b</td>
<td>27.5c</td>
<td>15.2d</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>29.2a</td>
<td>29.6b</td>
<td>34.3</td>
<td>52.5d</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Protein efficiency ratio</td>
<td>0.29a</td>
<td>0.33c</td>
<td>0.29a</td>
<td>0.26c</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

a, b, c = Means in the same row with different superscripts differ significantly (P<0.05), CSC = cotton seed cake, PKC = Palm kernel cake, BDG = Brewer’s dried grain, FCR = Feed conversion ratio, PER = protein efficiency ratio

In Table 3, weight gain was highest (P<0.05) in animals placed on CSC (2.50kg), this could have been due to the highest protein intake obtained from CSC. The live weight gain obtained for CSC in this study was however lower than 3.7kg obtained by Nyako et al., (2012) when CSC was fed in combination with Digitaria decumbens (Pangola grass). Animals on PKC were second in live weight gain (1.90kg), while animals on control diet had the lowest weight gain (0.91kg). This agrees with Ferdous et al., (2011) who reported that higher levels of concentrate supplementation increases live weight gain.

ARC (1984) reported that supplementation of protein based supplement enhances intake and growth performance. For feed conversion ratio, the lower the better and in this study the feed conversion ratio was significantly lowest in animals on CSC (29.15) and highest in BDG (34.30), this indicates better efficiency of converting feed to flesh. Cotton Seed Cake contained higher quality protein and crude protein content than the other protein supplements. The results of this study was similar to the result obtained by Arigbede et al. (2006) when CSC, PKC and BDG supplement was fed in combination with Panicum maximum basal diet to West African dwarf goats.

Conclusion

Congo grass when supplemented with cotton seed cake at 250g/day enhanced performance of Yankasa sheep better than PKC, BDG and Congo grass without any supplement. Cotton seed cake should be supplemented in two allocations (morning and evening) at 250g/d for better live weight gain in Yankasa sheep. However, occurrence of photosensitization in few animals feeding Congo grass was observed in the study due to feeding excess congo grass.

References

grass grain and cotton seed meal as supplements for Sheep fed mature Eastern gama grass hay. Anim. Feed Sci. and Tech. 76 issues Pp.95-102

Received: 15th September, 2017
Accepted: 30th November, 2017