SHORT COMMUNICATION
RESPONSE OF FINISHING BROILERS TO GRADED LEVELS OF HEAT TREATED SOLVENT EXTRACTED THEVETIA OIL

ADEYEMI, O.A.
Department of Animal Production, Ogun State University, P.M.B. 2002, Ago-Iwoye
Received 24 April 1998; Accepted 18 October 1998

ABSTRACT
The experiment reported herein considered the effect of using solvent extracted thevetia oil which was subjected to heat treatment at 110°C for 25 minutes. Four experimental diets consisting of a basal diet and three other diets in which 2.5, 5.0 and 10% of the control diet was replaced by the thevetia oil were formulated and fed to broilers during the finishing stage (4 - 8 weeks). Eighty broilers were individually weighed and randomly divided into four groups of 20 birds each and these were further divided into 4 replicates of 5 birds each. The four groups were then randomly allocated to the four dietary treatments. Feed Intake and Feed: Gain improved with increase in thevetia oil concentration (P<0.05). However, there was no significant effect of the dietary treatment on weight gain. Increasing the concentration of thevetia oil improved the retention of both protein and fat (P<0.05). It was concluded that solvent extracted thevetia oil will serve as a valuable feed ingredient for finishing broiler if a mild heat treatment is employed since some of the toxic compounds in it are probably thermolabile.

Key Words: Thevetia oil, heat processed, broiler performance

INTRODUCTION
Fats are without doubt energy booster in monogastric diet. Miller (1979) observed that there is only one method of formulating broiler diets in hot weather if maximum growth is to be obtained and this is by increasing the energy level and all other nutrients. This is normally done with use of added fat. Fuller (1981) stated that it was possible to alleviate to a great extent the growth depressing effect of heat stress by the use of high level of dietary fat in poultry rations. Other advantages of using fat is the fact that they improve the general appearance and palatability of feed. (Dale and Fuller, 1978; Moran, 1982). Fats are also sources of essential fatty acids and are important in the metabolism of fat soluble vitamins.

Fats and oils available in Nigeria are palm oil, groundnut oil together with melon seed oil and coconut oil in rather small quantities. (Babatunde et al., 1976). Attech et al., (1990) observed that recent competition between man and livestock for vegetable oils has resulted in little being available for livestock feeding, hence the need for an alternative source of oil that is not only cheaper but also not consumed by man. One such novel source is thevetia oil. Thevetia oil is obtained from Thevetia peruviana (Yor: Kaminiko) which is a common ornamental plant which flowers and fruits all year round in Nigeria.

There is little or no information on the nutritive value of thevetia oil for livestock. However, the little information available on Thevetia seeds have indicated that the seeds contain glycosides which are poisonous to livestock and human (Lang et al., 1963; Paul 1963). The work of Attech et al., (1990) showed that thevetia oil has an impressive unsaturated fatty acid profile, feeding trial however gave a performance far below expectation an indication that the mechanically, extracted thevetia oil may still contain some glycosides. Attech and Adeyemi (unpublished) determined the ME value of solvent extracted thevetia oil to be 7840 kcal/kg. The workers are of the opinion that solvent extraction may reduce this problem, since thevetin a major glycoside of Thevetia peruviana seed (Datta and Gopa 1981) is...
TABLE 1: COMPOSITION OF EXPERIMENTAL DIETS (%)

<table>
<thead>
<tr>
<th></th>
<th>DIETS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>100.00</td>
<td>97.50</td>
<td>95.00</td>
<td>90.00</td>
</tr>
<tr>
<td></td>
<td>Thevetia oil</td>
<td>2.50</td>
<td>5.00</td>
<td>10.00</td>
<td></td>
</tr>
</tbody>
</table>

Analysed nutrient content:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>93.65</td>
<td>91.90</td>
<td>92.50</td>
<td>89.14</td>
<td></td>
</tr>
<tr>
<td>Crude protein</td>
<td>19.69</td>
<td>19.03</td>
<td>18.65</td>
<td>18.59</td>
<td></td>
</tr>
<tr>
<td>Crude fat</td>
<td>5.05</td>
<td>6.88</td>
<td>8.40</td>
<td>11.26</td>
<td></td>
</tr>
<tr>
<td>Crude fibre</td>
<td>5.92</td>
<td>5.11</td>
<td>4.99</td>
<td>4.32</td>
<td></td>
</tr>
<tr>
<td>Metabolisable Energy</td>
<td>2958</td>
<td>3080.20</td>
<td>3202.4</td>
<td>3446.8</td>
<td></td>
</tr>
</tbody>
</table>

*Composed of 50.00% Maize, 30.00% soybean meal, 6.68% Brewers dried grain, 10.00% Maize bran, 1.84% Bone meal, 0.88% Oyster shell, 0.25% Salt, 0.10 DL-Methionine and 0.25% Vitamin - mineral premix (supplying the following per 1 tonne of feed 8000 IU vitamin A, 1200 IU vitamin D3, 13 IU vitamin E, 2mg vitamin K3, 3mg riboflavin, 10mg nicotinic acid, 7mg pantothenic acid, 900mg choline, 0.8mg cobalamin, 1.5mg folic acid, 0.25mg biotin, 125mg antioxidant, 25mg Fe, 80mg Mn, 50mg Zn, 20mg Cu, 0.2mg Co and 0.1mg Se.

1Calculated value.

TABLE 2: INFLUENCE OF INCREASING DIETARY CONCENTRATION OF THEVETIA OIL ON THE PERFORMANCE OF FINISHING BROILERS OVER A 4-WEEK PERIOD

<table>
<thead>
<tr>
<th></th>
<th>CONCENTRATION OF THEVETIA OIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria</td>
<td>0</td>
</tr>
<tr>
<td>Av. Initial weight (g) 545.2</td>
<td>538.93</td>
</tr>
<tr>
<td>Av. Final weight (g) 1447.36</td>
<td>1518.02</td>
</tr>
<tr>
<td>Av. Feed Intake (g/bird/day)</td>
<td>70.21</td>
</tr>
<tr>
<td>Weight gain (g/bird/day)</td>
<td>32.22</td>
</tr>
<tr>
<td>Feed:Gain</td>
<td>2.50b</td>
</tr>
</tbody>
</table>

* Figure followed by different superscripts in the same row differ significantly. (P < 0.05).

known to be insoluble in ether (Windholz, 1983). The current study aims at studying the effect of heated solvent extracted thevetia oil on finishing broilers.

MATERIALS AND METHODS

Cracked thevetia seeds were subjected to solvent extraction (petroleum ether 60 - 80°C bp). The extracted oil and ether were separated by distillation while remaining traces of petroleum ether was removed by use of a rotary vaporizer. Before feed mixing, the oil was heated at a temperature of 110°C for 25 minutes in an oven. Eighty broiler chicks of a commercial strain, aged four weeks which had been reared on conventional starter mash were used to determine the effect of graded level of thevetia oil on finishing broiler birds. The

HEAT TREATED, SOLVENT EXTRACTED THEVITIA OIL IN BROILER DIETS

TABLE 3: EFFECT OF INCREASING CONCENTRATION OF THEVITIA OIL IN THE DIET ON PROTEIN AND FAT RETENTION BY FINISHING BROILERS.

<table>
<thead>
<tr>
<th>Thevetia oil in diet (%)</th>
<th>Nutrient retention (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protein</td>
</tr>
<tr>
<td>0</td>
<td>59.87<sup>ab</sup></td>
</tr>
<tr>
<td>2.5</td>
<td>53.94<sup>b</sup></td>
</tr>
<tr>
<td>5.0</td>
<td>53.79<sup>b</sup></td>
</tr>
<tr>
<td>10.0</td>
<td>61.72<sup>c</sup></td>
</tr>
<tr>
<td>SEM</td>
<td>2.89</td>
</tr>
</tbody>
</table>

*Figures followed by different superscripts in the same column indicates significant difference (P < 0.05).

RESULTS

Broiler Performance

The response of finishing broilers to dietary inclusion of thevetia oil is given in Table 2. Average daily feed intake, average weight gain and Feed:Gain ratio were significantly affected by dietary treatments. (P < 0.05). As the concentration of thevetia oil increased in the diet, feed intake decreased while the average weight gain increased. Thevetia oil based diets also gave a better efficiency measured in terms of Feed:Gain ratio. No mortality was recorded during the 32 days finishing period.

Nutrient Retention

A trend towards increased retention of nutrient (P 0.05) with increasing thevetia oil content of diet was observed for protein and fat (Table 3).

DISCUSSION

The data generated from this study have shown that thevetia oil can be incorporated into the diets of finishing broilers. Earlier work of Atteh et al., (1990) showed that thevetia oil had an impressive fatty acid profile which is higher than the figures for palm oil given by NRC (1984) thus giving the expectation that thevetia oil will support a good productive performance. The result of feeding trials of Atteh et al., (1990), however was contrary to this expectation. The workers were of the opinion that mechanically extracted thevetia oil still probably contain some glycosides hence the depressed efficiency. Datta and Gopa (1991) isolated the cardiac glycoside thevetin from Thevetia peruviana which Windholz (1983) reported to be water soluble, hence it is thought that solvent extraction may provide a less toxic oil. Preliminary work on solvent extracted thevetia oil for starting broilers by Atteh and Adeyemi (Unpublished) gave a performance which was better than that reported by Atteh et al., (1990) using mechanically extracted oil. However in the current study finisher broilers on thevetia oil based diets gave a performance that is in agreement with the report of Corino et al., (1980) showing a positive relationship...
between the degree of unsaturation of fatty acid and feed efficiency in broilers.

Velu and Baker (1974), showed that as dietary fat increases, there will be a decrease in feed intake, a finding to which the result of this experiment is in consonance with. It was however contrary to the report of Akinwande (1981) who reported that increasing dietary fat level significantly increased feed intake of broiler chicks resulting in higher incidences of fatty liver. The increase in average daily weight gain with increasing dietary level of thevetia oil is in agreement with earlier works of Rand et al., (1958) and Griffiths et al., (1977) who observed that increasing the level of fat even at constant energy levels led to increase in weight gain. Growth rate of broilers and feed efficiency were almost a direct function of the dietary fat level as shown by Waldroup et al., (1976). The reason for this may not be far fetched since it has now been recognised that fats slow down the rate of food passage in the digestive tract and thus allowing enzymes to do a thorough job on digestion of carbohydrates and proteins in the diet. (Moran, 1982).

The retention of nutrients showed an increasing trend with increase in the concentration of thevetia oil in the diet, this observation is contrary to that of Attah et al., (1990) using mechanically extracted thevetia oil in broiler finisher diets. The improvement in protein retention with additional thevetia oil input is an indication that dietary fat supplementation improves retention. Rand et al., (1958) reported that increasing dietary fat level resulted in an improvement in protein utilisation. Vermaresch and Vanschoubroek (1968) postulated that fat does exert a protein anabolic action while Kussaiabati et al., (1983) reported higher apparent digestibility of protein when diets are rich in unsaturated lipids. The results of this study gave an indication that some of the glycosides that are present in thevetia oil are probably heat labile hence the improved performance observed here when compared to the work of Attah et al., (1990) using mechanically extracted oil and Attah and Adeyemi (Unpublished) using solvent extracted oil.

It is concluded that solvent extracted thevetia oil will serve as a valuable feed ingredient for finishing broilers if a mild heat treatment is employed, since some of the toxic compounds in it are probably thermolabile.

ACKNOWLEDGEMENT

The author gratefully acknowledges Prof. Olu Attech of the University of Ilorin for his valuable contributions.

REFERENCES

HEAT TREATED, SOLVENT EXTRACTED
DALE, N.M. AND FULLER, H.L. (1978). The
effect of dietary fat in free choice selection of

DATTA, P.C. AND S. COPA (1981). Differentiation and loss of thevetin in
Thevetia Peruvian callus. Chemical Abstracts
94, Abst. 205549.

DUNCAN, D.B. (1955). Multiple Range and

FULLER, H.L. (1981). Formulating broiler
feeds for hot weather use. Poultry Digest,
June pp 321 - 323.

systems and levels of various fat sources on
performance and carcass composition of

KUSSAIBATI, R., LECLERCQ, B. AND J.
GUillaume (1983). Effect of calcium,
magnesium and bile salts on apparent
metabolizable energy and digestibility of
lipids, starch and proteins in growing chicks.
Annals de zootechnie 32: 7 - 20.

LANG, H.Y., SCOTT, F. AND DENTON, B.
(1963). Study on cardiac glycoside of
Thevetia peruviana. Chemical Abst 62: 849p

MILLER, P.C. (1979). Poultry Nutrition for the
Middle East and Africa. United State Feed
Grain Council and the American Soybean
Association Publication.

nutrition of fowl and swine. The
gastrointestinal systems. Office for
Educational Practice. University of Guelph.

THEVITIA OIL IN BROILER DIETS
Ontario, Canada.

Nutrient Requirement of Poultry. 8th Revised
D.C.

PAUL, R.U. (1963). Pharmacology of cardiac
glycoside Thevetin Chemical Abstracts 62:
9444E.

RAND, N.T., SCOTT, H.M. AND
KUMMERUM, F.A. (1958). Dietary fat in
the nutrition of the growing chicken. Poult

Principles and procedure of statistics. A
biometrical approach, 2nd edition. McGraw
Hill Co. New York.

composition of chicks fed graded level of fat.

VERMEERSCH, G. AND
VANSCHOUBROEK, F. (1968). The
qualification of the effect of increasing levels of
various fats on body weight gain, efficiency
of food conversion and food intake of growing

WALDROUP, R.W., MITCHELL, R.J.,
Characterisation of the response of broiler
chickens to diets varying in nutrient density

cyclopedia of chemicals, drugs and
biologials. 10th, edn. Rahway, N.J. Merck
and Co.