PRELIMINARY STUDIES ON SIMULATION MODELS FOR DETERMINING PROTEIN REQUIREMENTS OF WEANLING AND GROWING PIGS IN TEMPERATE AND TROPICAL ENVIRONMENTS.

E.A. IYAYI AND J. STEINBACH

Department of Animal Science, University of Ibadan, Ibadan, NIGERIA

Received 11 August 1995; Accepted 27 June, 1996

ABSTRACT

Data on protein requirements of two weight categories of pigs, 4 - 9 kg and 4 - 28 kg, reared under temperate and tropical environments were obtained. These data were used to predict the protein requirement of pigs at different ambient temperatures. Models Y1 = 156.21 + 0.20(A) + 0.79(t) and Y2 = 190.25 - 1.115(l) + 0.202(t) were derived respectively for animals weighing from 4-9 kg and from 4 - 28 kg. When these models were simulated using the SIMPTEST 1 simulation program, animals in the tropics weighing from 4 - 9 kg were predicted to require 15.80 g kg\(^{-1}\) or 11.11% of protein more than their temperate counterparts. Those weighing from 4-28 kg in the tropics were predicted to require 4.04 g kg\(^{-1}\) or about 2.0% more of protein than their corresponding counterparts reared under temperate climatic conditions.

Keywords: Simulation models, protein requirements, pigs, environments.

INTRODUCTION

High environmental temperatures have negative effects on animal performance, especially in pigs (Fuller, 1965; Close and Stainer, 1985). In this species a significant interaction between ambient heat and level of feeding (and therefore nutrient intake) affects the growth performance (McCraeken, 1973; Close et al., 1978 Lopez et al., 1994). Growing pigs housed in environments above and below their zone of thermoneutrality can be aided or conversely, stressed further by the dietary ingredients (Coffey et al. 1982 Crenshaw, 1995). Evidence in literature suggest that protein levels for both weaned and growing pigs are certainly higher in tropical regions than the recommendations emanating from temperate countries (Babatunde et al., 1972; Iyai, 1993). Perhaps the most significant reason is that of the relatively poor quality of the protein concentrates used in the tropics. Furthermore, if tropical pigs must derive their minimum daily requirements of protein from a relatively lower volume of feed intake than pigs reared in a temperate environment, then such diets must of necessity be higher in protein content to compensate for the low volume of feed intake. However, there is no information in literature stating specifically by how much pigs under temperate and tropical conditions differ in their protein requirements. This study was therefore designed to provide this information using the SIMPTEST 1 simulation program (Justus-Liebig Universität, 1993).

MATERIALS AND METHODS

Sixty-five (65) experimental data on the protein requirements of weaners (4 - 9 kg) and growing pigs (4 - 28 kg) reared under temperate and tropical conditions were pooled from literature. Thirty-three data were from temperate regions and thirty-two from tropical regions respectively were used. All reported experimental data used were on Landrace x Large White, between the years 1972 and 1992. The studies were those reported from the tropical regions of Africa, South America and Asia and from the temperate regions of Europe. For the weaners, the corresponding average daily gain (A) and average prevailing environmental temperature (\(T^\circ C\)) were recorded and used to derive a regression model with protein requirement as the dependent variable. For the growing pigs the respective average initial weights, (I), the average environment temperature at (\(T^\circ C\))
TABLE 1: PROTEIN REQUIREMENT OF PIGS (4 - 9kg) GAINING 200 - 800g d⁻¹ AT DIFFERENT TEMPERATURES.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average daily gain (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>167.16</td>
<td>171.10</td>
<td>175.06</td>
<td>179.01</td>
<td>182.96</td>
<td>186.91</td>
<td>190.86</td>
</tr>
<tr>
<td>300</td>
<td>169.16</td>
<td>173.11</td>
<td>177.06</td>
<td>181.01</td>
<td>184.96</td>
<td>188.91</td>
<td>192.86</td>
</tr>
<tr>
<td>400</td>
<td>171.16</td>
<td>175.11</td>
<td>179.06</td>
<td>183.01</td>
<td>186.96</td>
<td>190.91</td>
<td>194.86</td>
</tr>
<tr>
<td>500</td>
<td>173.16</td>
<td>177.11</td>
<td>181.06</td>
<td>185.01</td>
<td>188.96</td>
<td>192.91</td>
<td>196.86</td>
</tr>
<tr>
<td>600</td>
<td>175.16</td>
<td>179.11</td>
<td>183.06</td>
<td>187.01</td>
<td>190.96</td>
<td>194.91</td>
<td>198.86</td>
</tr>
<tr>
<td>700</td>
<td>177.16</td>
<td>181.11</td>
<td>185.06</td>
<td>189.01</td>
<td>192.96</td>
<td>196.91</td>
<td>200.86</td>
</tr>
<tr>
<td>800</td>
<td>179.16</td>
<td>183.11</td>
<td>187.06</td>
<td>191.01</td>
<td>194.96</td>
<td>198.91</td>
<td>202.86</td>
</tr>
</tbody>
</table>

TABLE 2: PROTEIN REQUIREMENT OF PIGS (4 - 28kg) AT DIFFERENT TEMPERATURES

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average initial weight (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>186.80</td>
<td>187.81</td>
<td>188.82</td>
<td>189.83</td>
<td>190.84</td>
<td>191.85</td>
<td>192.86</td>
</tr>
<tr>
<td>8</td>
<td>182.34</td>
<td>183.35</td>
<td>184.36</td>
<td>185.37</td>
<td>186.38</td>
<td>187.39</td>
<td>188.40</td>
</tr>
<tr>
<td>12</td>
<td>177.88</td>
<td>178.89</td>
<td>179.90</td>
<td>180.91</td>
<td>181.92</td>
<td>182.92</td>
<td>184.94</td>
</tr>
<tr>
<td>16</td>
<td>173.42</td>
<td>174.43</td>
<td>175.44</td>
<td>176.45</td>
<td>177.46</td>
<td>178.47</td>
<td>179.48</td>
</tr>
<tr>
<td>20</td>
<td>168.95</td>
<td>169.96</td>
<td>170.97</td>
<td>171.98</td>
<td>172.99</td>
<td>173.00</td>
<td>175.01</td>
</tr>
<tr>
<td>24</td>
<td>164.49</td>
<td>165.50</td>
<td>166.51</td>
<td>167.52</td>
<td>168.53</td>
<td>169.54</td>
<td>170.55</td>
</tr>
<tr>
<td>28</td>
<td>160.03</td>
<td>161.04</td>
<td>162.05</td>
<td>163.06</td>
<td>164.07</td>
<td>165.08</td>
<td>166.06</td>
</tr>
</tbody>
</table>

and average daily gain (A) were also recorded and the first two used to derive a regression model with the two factors acting as the independent factor and protein requirement as the dependent one. In both studies, the SPSS programme was used to run the regression analysis using the SPAREGR. OVL and SPDSLREG. OVL modules within the programme. Thereafter, the regression models obtained were simulated using the SIMPTEST 1 simulation program (Justus-Liebig Universität, 1993).

RESULTS AND DISCUSSION

Weaners (4 - 9kg)

The average daily gain (A) was negatively correlated (r = -0.60) and significantly (P < 0.01) correlated with the environmental temperature. The regression model derived from associating protein requirement with average daily gain and temperature was:

\[Y_1 = 159.21 + 0.20(A) + 0.79(t) \]

where

\[A = \text{average daily weight gain in g} \]

\[t = \text{temperature in °C} \]

when this model was then simulated with the SIMPTEST 1 program, the result of predicted protein requirement of weaners meant to gain between 200g and 800gd-1 are as shown in Table 1.

Growing Pigs (4 - 28kg)

The average daily weight gain (A) was negative (r = -0.5) and significantly (P < 0.01) correlated to temperature but positively (r = 0.4) and significantly (P < 0.05) correlated to the initial weights (I) of the animals. The model derived from associating protein requirement, initial weight and temperature was:

\[Y_2 = 190.25 - 1.11(i) + 0.20(t) \]

where

\[Y_2 = \text{protein requirement in g kg}^{-1} \]

\[I = \text{initial weight in g} \]

\[t = \text{temperature in °C} \]

Simulation of this regression model using the SIMPTEST 1 program gave predicted protein requirements.
SIMULATION MODELS FOR PROTEIN REQUIREMENTS OF PIGS

requirements of pigs with initial weights of between 4kg to 28kg as shown in Table 2. The results in Table 1 showed an increase in protein requirement by about 4g kg\(^{-1}\) for every 5°C rise in temperature. Furthermore, for every 100g predicted increase in the average daily gain and at a particular temperature, the protein requirement increased by 2g kg\(^{-1}\). The predicted protein requirement at an A of 500g for example under temperate conditions is between 173.16-181.06g kg\(^{-1}\), at thermal neutrality 185.01-188.96 kg\(^{-1}\) and under tropical condition 192.91-196.86g kg\(^{-1}\). The difference in the protein requirement of pigs in the two environments was found to be 15.80g kg\(^{-1}\) or 11.11% increase of tropical requirement over requirement in the temperate.

For animals weighing between 4-28kg, initially there was a general increase in protein requirement by about 1.01g kg\(^{-1}\) for every 5°C increase in temperature. Interestingly, with an increase in the initial weight of the animals the predicted protein requirement at a particular temperature decreased by about 4.46g kg\(^{-1}\). Pigs in the tropics were predicted to require 4.04g kg\(^{-1}\) of protein or about 2.0% more than pigs reared under temperate conditions (Table 2).

Our results on the predicted protein requirements confirm reports of influence of ambient temperature on protein requirement. The results illustrate the importance of diet-dependent heat increment in thermal regulation of pigs housed at a high ambient temperature. Apart from induced reduction in feed intake, high environmental temperature is also related to protein degradation (Christon, 1988). As earlier stated by Steinbach(1985), protein concentrations need to be increased by approximately two percentage units in the range between 25 and 30°C, or the protein quality to be improved by adding lysine and methionine. Thus results of the present study have been able to demonstrate clearly that because of a variety of factors in tropical countries among which are the high environmental temperature and low quality feed there is the need to increase the protein requirement of weaning pigs in the tropics by about 11.11% over the requirement in the temperate. But with bigger animals, this difference is reduced to about 2%.

ACKNOWLEDGEMENT

The authors are grateful to the Deutscher Akademischer Austauschdienst (DAAD) for funding this study and to the Institute of Livestock Ecology, Justus-Liebig University, Giessen, Germany, for providing the facilities used in the study.

REFERENCES

