HAEMATOLOGICAL AND SERUM BIOCHEMICAL PARAMETERS OF FINISHER BROILER BIRDS ADMINISTERED AQUEOUS EXTRACTS OF GARCINIA KOLA SEEDS

Iwuji, T. C*., Ukwuoma, M. C., Ogbuewu, I. P., Etuk, I. F., Ahaiwe, E. U., Egenuka, F. C. and Okerc, P. C.

Department of Animal Science and Technology, Federal University of Technology, P. M. B. 1526, Owerri, Nigeria.

*Corresponding author: tivuij@gmail.com; 08033429540

Abstract

The haematological and serum biochemical parameters of 135 finisher broiler birds were determined, following the administration of aqueous extracts of Garcinia kola seeds. The experiment was carried out in a Completely Randomized Design (CRD), made up of 3 treatments; T_1 , T_2 and T_3 containing 0.00, 15.00 and 30.00 mg of Garcinia kola seed extracts per litre. The experiment was replicated thrice. Haemoglobin concentration (Hb), mean corpuscular haemoglobin concentration (MCHC), white blood cell (WBC) and lymphocyte counts were significantly (P<0.05) higher in the treated birds, while heterophil counts were significantly (P<0.05) lower in the treated birds. Total protein (TP), globulin, uric acid, alanine transaminase (ALT) and alkaline phosphatase (ALP) increased in birds on T_3 while albumin, glucose, cholesterol and aspartate transaminase (AST) decreased in them. This study demonstrates that aqueous extracts of Garcinia kola seeds do not have untoward effects on the haematological and serum biochemical parameters of finisher broiler birds; and achieved best results at 30 mg/L administration.

Key words: Haematological, biochemical, Garcinia kola seed extracts, finisher broiler.

Introduction

Unconventional and non synthetic materials are being employed in different ways in livestock production in recent times. This is sequel to the advocacy for organic farming, increasing cost of conventional feed materials and the untoward effect of synthetic antibacterial drugs used in livestock production (Iwuji and Herbert, 2012). Many of these unconventional and non synthetic materials are usually used in livestock production as feedstuffs to replace/substitute conventional but more expensive ones, as feed additives to promote growth or as natural antibiotics (Ertas et al., 2005). Although these materials may have recorded positive results in their replacement/substituting and feed additive roles, their effects on the blood of the animals receiving them need to be evaluated to fully ascertain their beneficial effects in these animals. Sequel to the study on the evaluation of growth performance, carcass and organ weights of broiler finisher birds administered aqueous extracts of Garcinia kola seeds (Iwuji et al., 2016), it became imperative to evaluate the haematological and serum biochemical parameters of finisher broiler birds administered aqueous extracts of Garcinia kola seeds.

Materials and Methods

The experiment was carried out at the Poultry Unit of the Teaching and Research Farm, Department of Animal Science and Technology, Federal University of Technology Owerri, Imo State. Garcinia kola seeds were purchased at 'Afor Enyiogugu' market in Mbaise, Imo State. The seeds were prepared and ground as described by (Uko et al., 2001). The dried ground Garcinia kola seeds were then stored in a clean dry plastic container with cover, to be used when needed. Aqueous extracts of Garcinia kola seeds were prepared daily using boiled clean water, by dissolving ground Garcinia kola seeds at the rate of 15.0 g/L and 30.0 g/L in the boiled clean water for treatment two and three, respectively. The solutions were then filtered after 24 hours with a clean silk cloth, immediately after shaking. Treatment one (T₁) was the control and contained

0.0 g/L of ground Garcinia kola seeds.

One hundred and thirty five 4 weeks old Marshall Broiler birds were used for the experiment. The birds were purchased at day old from a reputable farm in Owerri, Imo State and reared for four weeks, after which they were divided into three groups and assigned to the three treatments in a Completely Randomized Design (CRD). Each treatment contained 45 birds, replicated thrice of 15 birds each. The birds were raised in deep litter system with each replicate housed in a 2 m x 3 m pen. Standard management procedures were observed, while feed and water were offered ad libitum. Each replicate in the experimental groups received two litres of treatment every morning, for 28 days, after which normal clean water were offered for the rest of the day. At the end of the experiment, the birds were starved feed overnight

and fifteen birds per treatment (five per replicate) were randomly selected for blood collection through the jugular vein for haematological and serum biochemical analyses as described by Alikwe et al., 2010.

All data collected were subjected to one way analysis of variance (ANOVA) according to Steel and Torie (1980). Significantly (P<0.05) different means were separated using Duncan's New Multiple Range Test (DNMRT) as outlined by (Obi, 1990).

Results and Discussion

Haematological analysis of the experimental birds recorded significantly (P<0.05) higher haemoglobin concentration (Hb) in birds on T, (9.25 g/dl) and T₃ (9.60 g/dl) than in birds on T₁ (8.70 g/dl). Since the red blood cells (RBC) were similar (P>0.05) among the experimental birds, it means that aqueous extracts of Garcinia kola seeds only affected the RBCs by increasing their oxygen carrying capacity through increased Hb (Frandson et al., 2009). This assertion is further corroborated by the significantly (P<0.05) higher values obtained for mean corpuscular haemoglobin concentration (MCHC) of the treated birds in T_2 (28.65 g/dl) and T_3 (28.30 g/dl) than in T₁ (27.35 g/dl). Total white blood cell (WBC) counts of birds on T₁ (80.35 x10³/µl) was significantly (P<0.05) higher than that of birds on T_2 (75.50 x10³/µl), but significantly (P<0.05) lower than WBC counts of birds on T₃ (84.50 x103/µl). However, the percent lymphocyte counts were significantly (P<0.05) higher in the treated birds ($T_1 = 75.00 \%$; $T_2 = 79.00 \%$; $T_3 =$ 81.00 %), while the percent heterophil counts were significantly (P<0.05) lower in the treated birds $(T_1 = 25.00 \%; T_2 = 21.00 \%; T_3 = 19.00 \%)$. Despite significantly (P<0.05) lower WBC count recorded in T2, the cellular immunity was not compromised since the value was within documented normal range (Mitruka and Rawnsley, 1977); and the ability of Garcinia kola to enhance cellular immunity through increased percent lymphocyte count, even in non pathogenic conditions was still demonstrated (Iwuji, 2010). The significantly (P<0.05) lower percent heterophil counts in the treated birds may be due to the antioxidant activity of Garcinia kola (Iwuji, 2010) in the absence of an inflammatory condition (Brooks et al., 1996).

Similar (P>0.05) total protein (TP) values were recorded between T₁ (3.25 g/dl) and T₂ (2.80 g/dl); T₁ and T₃ (3.70 g/dl), but T₃ was significantly (P<0.05) higher than T2. Albumin and globulin components of the TP in T, (1.65 and 1.60 g/dl for albumin and globulin, respectively) and T, (1.65 and 2.05 g/dl for albumin and globulin, respectively) were similar (P>0.05), but significantly (P<0.05) lower than the albumin of the birds on T2 (2.40 g/dl) and significantly (P<0.05) higher than the globulin of the birds on T, (0.40 g/dl). This may be an indication that the administration of aqueous extracts of Garcinia kola seeds at 15 g/L was responded to as an under dose by the birds in TP and its components; which led to a withdrawal syndrome (Crump et al., 1976). Serum glucose values of the experimental birds were 138.45, 153.00 and 86.35 mg/dl, for T₁, T₂ and T₃, respectively; and serum cholesterol values were 142.45, 111.80 and 116.50 mg/dl, for T1, T2 and T3, respectively. Unequivocally, the anti diabetic and anti cholesterolemic properties of Garcinia kola seeds (Iwuji, 2010) were demonstrated in these results. Serum uric acid values of the experimental birds were 8.75, 7.70 and 12.05 mg/dl, for T₁, T₂ and T₃ respectively; which was significantly (P<0.05) higher in T₃, probably due to higher serum protein content of the birds. Aspartate transaminase (AST) was similar (P>0.05) in T₁ (11.00 IU/L) and T₂ (12.00 IU/L) which were significantly (P<0.05) higher than AST of birds on T₃ (9.50 IU/L). Alanine transaminase (ALT) of the birds on T₁ (3.50 IU/L) and T₂ (4.50 IU/L) was similar (P>0.05), but was significantly (P<0.05) lower than ALT of birds on T₃ (6.00 IU/L). Alkaline phosphatase (ALP) was similar (P>0.05) in T₂ (183.65 IU/L) and T₃ (186.30 IU/L), but was significantly (P<0.05) higher than ALP of birds on T₁ (116.95 IU/L). These results of the liver enzymes evaluated were within the range of documented normal values (Mitruka and Rawnsley, 1977) and do not indicate hepatic damage or toxicity as a result of the administration of aqueous extracts of Garcinia kola seeds. The significant (P<0.05) differences in their values among the experimental birds may be due to altered metabolic activities in other organs or tissues where they are also produced (Dial, 1995; Iwuji, 2010).

Table 1: Haematological parameters of broiler birds administered aqueous extracts of Garcinia kola

seeds.					
Parameters	$\mathbf{T_1}$	T_2	T_3	SEM	
Hb (g/dl)	8.70 ^b	9.25ª	9.60°	0.16	
RBC (x 10 ⁶ /μl)	2.23	2.28	2.41	0.24	
PCV (%)	29.00	30.25	30.67	0.59	
MCV (fl)	143.00	141.80	140.35	1.97	
MCH (pg)	39.10	40.60	39.80	0.92	
MCHC (g/dl)	27.35 ^b	28.65 ^a	28.30 ^a	0.29	
WBC (x 10 ³ /μl)	80.35 ^b	75.50°	84.50°	1.28	
Lymphocytes (%)	75.00 ^b	79.00°	81.00 ^a	1.26	
Heterophils (%)	25.00°	21.00 ^b	19.00 ^b	1.24	
Monocytes (%)	III Classiful Y	Applied to the particular		-	
Basophils (%)	and the second s	-	-	-	
Eosinophils (%)	Paris -	-		-	

abc: Means within a row with different superscripts are significantly (P<0.05) different.

Table 2: Serum biochemical parameters of broiler birds administered aqueous extracts of Garcinia

kola seeas.				
Parameters	$\mathbf{T_1}$	T_2	T_3	SEM
Total protein (g/dl)	3.25 ^{ab}	2.80 ^b	3.70 ^a	0.28
Albumin (g/dl)	1.65 ^b	2.40^{a}	1.65 ^b	0.20
Globulin (g/dl)	1.60 ^a	0.40^{b}	2.05^{a}	0.30
Glucose (mg/dl)	138.45 ^a	153.00 ^a	86.35 ^b	12.49
Cholesterol (mg/dl)	142.45 ^a	111.80 ^b	116.50 ^b	6.65
Uric acid (mg/dl)	8.75 ^b	7.70 ^b	12.05 ^a	0.97
Creatinine (mg/dl)	0.14	0.12	0.28	0.06
AST (IU/L)	11.00 ^a	12.00 ^a	9.50 ^b	0.48
ALT (IU/L)	3.50 ^b	4.50 ^b	6.00^{a}	0.45
ALP (IU/L)	116.95 ^b	183.65°	186.30 ^a	21.90

ab: Means within a row with different superscripts are significantly (P<0.05) different. AST = Aspartate transaminase; ALT = Alanine transaminase; ALP = Alkaline phosphatase.

Conclusion

The results of the haematological and serum biochemical parameters of finisher broiler birds administered aqueous extracts of *Garcinia kola* seeds showed no adverse effect, thereby supporting its earlier use to enhance growth in broiler birds (Iwuji *et al.*, 2016).

References

Alikwe, P. C. N., Faremi, A. Y. and Egwaikhide, P. A. (2010). Biochemical evaluation of serum metabolites, enzymes and haematological indices of broiler-chicks fed with varying levels of rumen epithelial scraps in place of fish meal proteins. Res. J. Poult. Sciences. Vol. 3 (2): 27-31.

Brooks Jr, R. L., Bounous, D. I. and Andreasen, C. B. (1996). Functional comparison of avian heterophils with human and canine neutrophils. Comparative Haematology, International. Vol. 6 (3): 153-159.

Crump, K. S., Hoel, D. G., Langley, C. H. and Peto, R. (1976). Fundamental carcinogenic processes and their implication for low dose risk assessment. *Cancer Research*. 36 (9 part 1): 2973-2979.

Dial, S. M. (1995). Clinic pathological evaluation of the liver. Vet. Clin. 25, 257-293.

Ertas, O. N., Güler, T., Çiftçi, M., Dalkillç, B. and Simsek, Ü. G. (2005). The effect of an essential oil mix derived from oregano, clove and anise on broiler performance. *Int. J. Poult. Sci.* Vol. 4(11): 879-884.

Frandson, R. D., Wilke, W. L. and Fails, A. D. (2009). Anatomy and Physiology of Farm animals (7th edn). Wiley-Blackwell Publishing, USA.

Iwuji, T. C. (2010). Growth performance, semen and blood characteristics of rabbits fed diets containing Garcinia kola seeds. MSc. Thesis submitted to the Department of Animal Breeding and Physiology, MOUAU.

- Iwuji, T. C. and Herbert, U. (2012). Haematological and serum biochemical characteristics of rabbit bucks fed diets
- Advances in Agriculture, Sciences and Engineering Research. Vol. 2 (8): 299 305.
- Iwuji, T. C., Ukwuoma, M. C., Ogbuewu, I. P., Etuk, I. F., Ahaiwe, E. U., Egenuka, F. C. and Okere, P. C. (2016). Evaluation of growth performance, carcass and organ weights of broiler finisher birds administered aqueous extracts of Garcinia kola seeds. In print.
- Mitruka, B. M. and Rawnsley, H. M. (1977).
 Clinical, biochemical and haematological reference values in normal and experimental animals. Masson Publishing, USA, Inc., 83: 134-135.
- Obi, I. U. (1990). Statistical methods of detecting differences between treatment means. 2nd Edition Snaap Press Enugu, Nigeria.
- Steel, R.G.O. and Torrie, J. H. (1980). Principles and procedures of Statistics. A biometric Approach. 2nd Edn. Mc. Graw-Hill Brook Co.
 - Uko, O.J, Usman, A, and Mohammed, A. (2001). Some biological activities of Garcinica kola in growing rats. Vet archiv 71 (5) 287-297.