Effects of cooking on chemical and phytochemical compositions of raw and cooked melon (Citrullus colocynthis L) and walnut (Tetracarpidium conophorum L) seeds

Olufeko¹, S. O., Omojola¹, A. B. and Ogunwole², O. A.

¹Animal Products and Processing Unit, Department of Animal Science, University of Ibadan, Ibadan, Nigeria ²Agricultural Biochemistry and Nutrition Unit, Department of Animal Science, University of Ibadan, Ibadan, Nigeria

Corresponding author: droaogunwole@gmail.com; 08033939829

Abstract

Effects of cooking on proximate, phytochemicals and selected vitamins composition of melon and walnut were investigated in this study. Melon Seeds (MS) and Walnut Seed (WS) weighing 500 g each were obtained from open market and each was halved into two. One half was boiled for one hour and oven dried at 60°C for 48 hours till constant weight was attained to obtain treated melon seed and treated walnut seed, respectively. The other halves were left un-cooked and were labelled uncooked melon seed and uncooked walnut seed, respectively. In MS, cooking reduced the crude protein, crude fibre and ash compositions but increased the moisture and ether extracts contents significantly (p<0.05). In WS, cooking reduced the crude protein and crude fibre but increased the ether extracts and moisture significantly (p < 0.05) without any effect on ash contents (p > 0.05). Aside from flavonoids which increased (p < 0.05), other phytochemicals in MS were significantly reduced by cooking (p < 0.05). Also, there were reduced tannins, steroids, terpenoids and alkaloids. The phytates and flavonoids increased significantly (p<0.05) while saponins composition remained significantly unaffected (p>0.05) by cooking. Ascorbic acid and tocopherol in MS as well as β -carotene and ergosterol contents were not affected significantly (p>0.05) by cooking. However, the β carotene of 0.16 and ergosterol of 0.57 in raw MS-reduced significantly (p<0.05) to 0.13 and 0.25 mg/kg, respectively by cooking, Also, tocopherol and ascorbic acid with respective values of 69.40 and 4.41 mg/kg in WS were lowered significantly (p < 0.05) by cooking to 58.65 and 3.95 mg/kg, respectively. Processing reduced antinutrients in melon and walnut seeds and improve their nutrient sources.

Keywords: Walnut, melon seeds, Vitamins, Flavonoids, Proximate composition.

Introduction

Seeds are of nutritional importance as they supply nutrients required for growth and development in human and animals. Despite the fear of anti-nutritional factors in some of the crops and seeds. Studies (Liu, 2004), showed that the phytochemicals present in plants have distinctive antinutrients in reducing several deadly disease (Agte et al., 2004). Plants also contain chemical compounds such as saponins, tannins, oxalates, phytates, trypsin inhibitors and cyanogenic glycosides commonly known secondary

metabolites, which are biologically active (Soetan and Oyewole, 2009). Secondary metabolites are applicable in nutrition and pharmacy as biologically-active agents (Soetan and Oyewole, 2009). Walnut and melon seeds are also known to have high amounts of essential nutrients, vitamins, minerals and fatty acids and fibre (Gafar and Itodo, 2011). Walnut is one of the most widely used nuts among the dessert nuts. It belongs to the Jugludaceae family. African walnut is an edible seed of any tree of the genus *Euphorbiaceae*, especially, the *Tetracarpidium conophorum*, found in

Nigeria and Cameroon. It is a climbing shrub of 3.05-6.10 m long, cultivated principally for the nuts which are cooked and consumed as snacks or dessert (Adebona et al., 1998). It is known in the South-East Nigeria as ukpa (Igbo), Western Nigeria as awusa or asala (Yoruba), South-South Nigeria as Okhue (Edo). Walnut seed, is of great potentials, the secondary metabolites in the seeds have shown to be biologically active (Zenk, 1991). These secondary metabolites are widely applied in nutrition and pharmacology (Soetan, 2008). The nut is rich in fat, protein, minerals and vitamins, though the minerals content and percentage oil content of the nut varies depending on its cultivar, soil parameters and climatic conditions of where it is grown (Ogunsua and Adegbona, 1993). Alkaloids present in nuts give a bitter taste which is usually observed upon drinking water immediately after eating the nuts (Edem et al, 2009). Melon is universally grown in tropical Africa for its seed (Alkofahi et al., 1996). It is reported to have hepatoprotective activity (Dar et al., 2012), anti-arthritic activity (Kachhawah et al., 2016), good physiochemical and fatty acid profile (Oluba et al., 2008). Melon is popular in Nigeria because of its edible seeds that is commonly used in the preparation of local soups or stew prepared with or without vegetables (Oloko et al., 2006; Ogbonna, 2007; Jackson et al., 2013). Melon is rich in oil and protein, comprising about 50% oil and 35% protein, among major foods only peanut has such high oil content (Ojie et al., 2008). Phytochemicals present in walnut seed have been determined (Nwaoguikpe et al., 2012). Also, the chemical compositions of melon seed have been documented (Jacob et al., 2015). However, information on the effect of cooking on the proximate composition and the phytochemical constituents is scanty. It is therefore necessary to assess their nutritional

potential. Hence, this study was aimed at determining the proximate and phytochemicals present in walnut and melon seed meal as affected by cooking.

Materials and methods Preparation of samples

Melon seeds and walnut kernel were purchased from Bodija market in Ibadan, Nigeria. The melon seed and walnut kernel were thoroughly washed, before dividing both into two parts. A part of both melon and walnut were cooked seperately in boiling water at 100 °C for one hour. Melon was dehulled while walnut was dekerneled then their seeds were removed and oven dried at 60 °C for 48 hours till constant weight were attained to obtain treated melon seed (TMS) and treated walnut seed (TWS), respectively. Samples were ground separately while the other halves were left un-cooked and labelled uncooked melon seed (UMS) and uncooked walnut seed (UWS), respectively and kept for analyses.

Chemical determinations

Proximate analysis of raw and cooked samples were carried out in triplicates using the official methods (AOAC, 2000). Alkaloids were determined according to Okwu and Josiah (2006). Flavonoids were determined with the methods of Okwu (2005), saponins were estimated as described (Obadoni and Ochuk, 2001). Phytates were determined using the method described by Wheeler and Ferrel (1971). Tannins were quantified using the method of Sofowora (1993). Phenol was measured using the Folin Ciocalteu reagent (Mc Donald et al., 2001) while terpenoids and steroid were determined as described (Pearson, 1973). Vitamins C and E as well as provitamins A and D compositions were quantified as described (Okwu, 2004).

Statistical analysis

Data were subjected to descriptive statistics and studentised T test analysis (SAS, 2002)

Olufeko, Omojola and Ogunwole

while means were separated at $\alpha_{0.05}$.

Results

The proximate composition of raw and cooked melon seeds are shown in Table 1. Crude protein reduced significantly (p<0.05) from 30.78 % in raw melon to 27.63 % in cooked melon seed. Also, crude fibre and ash reduced significantly (P<0.05)

from 3.50 to 3.10 % and 3.50 to 3.10 %, respectively after cooking for raw and cooked melon, respectively. Moisture content increased significantly from 9.68 to 10.20 % while ether extract likewise increased significantly (p<0.05) from 59.88 in raw melon seed to 61.10 % in the cooked melon seed.

Table 1: Proximate composition (g/100g) of raw and cooked melon seed

Parameters(%)	Raw melon	Cooked melon
Crude Protein	30.78 ± 0.02^{a}	27.63±0.02 ^b
Ether extract	$59.88 \pm 0.02^{\mathrm{b}}$	61.10±0.02 ^a
Crude Fibre	3.50±0.02 ^a	3.10±0.01 ^b
Ash	3.50 ±0.01 a	3.10±0.01 ^b
Moisture	9.68±0.02 ^b	10.20±0.01 ^a

ab- Means with different superscripts on each row are significantly different (P<0.05)

Proximate composition of raw and cooked walnut seed are shown in Table 2. Moisture content increased significantly (p<0.05) from 8.8% in raw walnut to 11.5% after cooking Similarly, ether extract also increased from 26.78% to 44.59% after cooking. There was significant reduction

(p<0.05) in crude protein from 32.2 in the raw walnut to 23.8 %, when cooked. The ash values were not affected significantly (p>0.05) by cooking. Crude fibre values reduced significantly (p<0.05) after cooking from 5.39 % in raw walnut to 4.10 % in raw and cooked walnut.

Table 2: Proximate composition (g/100g) of raw and cooked walnut seed meal

Table 2: I Toximate composition (g/100g) of Taw and cooked warnut seed mean		
Parameters(%)	Raw walnut	Cooked walnut
Crude Protein	32.24±0.01 ^a	23.78±0.02 ^b
Ether extract	26.78±0.01	44.59±0.01 ^a
Crude Fibre	5.39±0.01 ^a	4.10±0.02 ^b
Ash	5.38 ± 0.02	5.30 ± 0.02
Moisture	8.78±0.02 ^b	11.50±0.01

ab- Means with different superscripts on each row are significantly different (P<0.05)

Phytochemical composition of raw and cooked melon seed meal is presented in Table 3. The phytochemical constituents (tannin, steroid, saponin, terpenoid, phytate, alkaloids and phenol) were all

lowered significantly (p<0.05) due to cooking. However, only flavonoids increased significantly from 20.59 in raw melon seed to 21.13mg/100g) in cooked melon.

Table 3: Phytochemical composition of raw and cooked melon seed meal

Parameters(mg/100g)	Raw Melon	Cooked Melon
Tannin	22.92 ± 0.20^{a}	17.46 ± 1.09^{b}
Steroid	16.26 ± 0.31^{a}	13.53 ± 0.92^{b}
Saponin	23.22 ± 0.01^{a}	19.22 ± 0.02^{b}
Terpenoid	$37.02 \pm 0.02^{^{a}}$	22.44 ± 0.02^{b}
Phytate	0.70 ± 0.002	0.73 ± 0.001
Alkaloids	5.23 ± 0.01^{a}	1.07 ± 0.02^{b}
Flavonoids	20.59 ± 0.01^{b}	21.13 ± 0.02^{a}
Phenol	$1.56 \pm 0.01^{^{a}}$	0.46 ± 0.03^{b}

ab- Means with different superscripts on each row are significantly different (P<0.05)

Effect of cooking on phytochemical composition of walnut seed meal is shown in Table 4. Tannin, steroid, terpenoid, alkaloids and phenol values reduced

significantly (p<0.05) due to cooking, the phytate and flavonoids increased significantly (p<0.05) while saponin was not affected significantly (p>0.05) by cooking.

Table 4: Phytochemical composition of raw and cooked walnut seed meal

Parameters(mg/100g)	Raw Walnut	Cooked Walnut
Tannin	20.82 ± 0.58^{a}	16.92 ± 0.42^{b}
Steroid	16.95 ± 0.62^{a}	14.90 ± 0.32^{b}
Saponin	24.91 ± 0.02	24.62 ± 0.01
Terpenoid	32.91 ± 0.01^{a}	23.94 ± 0.02^{b}
Phytate	0.49 ± 0.002^{b}	$0.81 \pm 0.002^{^{a}}$
Alkaloids	$13.06 \pm 0.02^{^{a}}$	9.32 ± 0.02^{b}
Flavonoids	12.51 ± 0.01^{b}	21.13 ± 0.02^{a}
Phenol	1.73±0.002 ^a	0.91±0.001 ^b

^{ab-} Means with different superscripts on each row are significantly different (P<0.05)

The vitamin and provitamin content (mg/100g) of raw and cooked melon seed meal are shown in Table 5. The tocopherol and ascorbic acid compostions of melon seeds were not significantly affected (p>0.05) by cooking. However, β carotene

value reduced significantly (p<0.05) from 0.16 in raw melon seeds to 0.13 mg/kg due to cooking. Similarly, ergocalcipherol composition also decreased significantly (p<0.05) from 0.57 in the raw melon to 0.25 mg/kg after cooking.

Table 5: Vitamin and provitamin composition (mg/kg) of raw and cooked melon seed meal

Parameters	Raw Melon	Cooked Melon
β carotene	0.16±0.01	0.13±0.01 ^b
Ergocalcipherol	0.57 ± 0.06^{a}	0.25 ± 0.05^{b}
Tocopherol	3.07 ± 0.01	3.06 ± 0.02
Ascorbic acid	1.56 ± 0.07	1.47 ± 0.16

ab- Means with different superscripts on each row are significantly different (P<0.05)

The vitamin and provitamin composition in the raw and cooked walnut seed meal are presented in Table 6. The β carotene and ergosterol compositions were were not significantly affected (P>0.05) by cooking.

Conversely both tocopherol and ascorbic acid compositions in the raw walnut which were 69.40 and 4.41 reduced significantly (p<0.05) to 58.65 and 3.95 mg/kg, respectively in cooked walnut seeds.

Table 6: Vitamin and provitamin (mg/kg) compositions of raw and cooked walnut seed meal

Parameters	Raw Walnut	Cooked Walnut
β carotene	2.67 ± 0.17	2.48±0.15
Ergocalcipherol	0.51 ± 0.11	0.55 ± 0.05
Tocopherol	$69.40\pm0.10^{^{a}}$	58.65±0.24 ^b
Ascorbic acid	$4.41\pm0.10^{^{a}}$	3.95±0.26 ^b

ab- Means with different superscripts on each row are significantly different (P<0.05)

Discussion

Raw and cooked melon seed contained relatively higher moisture content than reported for the raw melon (Abiodun and Adeleke, 2010). This could be attributed to cooking due to absorption of water by simple diffusion. There was decreased ash content of melon seed from 3.50 to 3.10 % after cooking which was lower than the range of 3.35 to 4.89 % reported for melon seeds (Enlinge et al., 2012). The reduced crude protein after cooking was perhaps due to thermal reduction as a result of denaturation of some nitrogenous compound during processing (Apeh et al., 2014). In the literature, crude protein range of 3.2 to 43.1 % were reported for fruits and nuts (Achinewhu et al., 1995). The ether extract value of 61.10 % was higher than 48.9 %, earlier documented (Oyeleke, 2003). Melon are called oil seeds and are known to contain 43-55 % oil (Ige et al., 1984), which provides body the vital energy when consumed and promote fat soluble vitamin absorption (Boget et al, 1994). The crude protein reduction due to walnut cooking from 32.24 to 23.78 % was adduced to leaching of nutrient into cooking water in line with the earlier observation by authors (Adeyeye, 2010; Adeniyan et al., 2013). Conversely,

Eugene et al. (2015) obtained a lower crude protein range of 26.2 to 27.7 %. The increased ether extract composition from 26.78 to 44.59 % could be explained by the likely distruption of cell structure and membrane partitions of the seed due to cooking which caused the fat to melt and easily extractable (Ayoola et al.,2011). Eugene et al. (2015) recorded a higher ether extract range of 49.8 to 51.7 % than observed in this study. Oils in walnut are rich source of healthy mono-saturated fats and omega-3-fatty acid (Malteljan, 2015). The relatively low moisture content of raw walnut could make it more durable by having higher storage duration compared to cooked walnut.

Cooking reduced phytochemical composition in melon seed except for the flavonoids. The observed higher values of flavonoids as reported by Braide *et al.* (2012) could be because of different specie and cultivar area. Phenol concentration in melon was higher than other legumes (Oboh, 2006). Other predominant phytochemical of melon seed are terpenoid, flavonoids, saponin and tannin which exhibit various biological properties as antioxidant (Latha *et al.*, 2003). Reduction in saponin after cooking would be because of the detergent properties and content of

both water and fat soluble components (Manika et al., 2015). Phenols are natural antioxidant which inhibit oxidation of unsaturated lipids and prevents formation of oxidised low density lipoproteins that cause cardiovascular diseases in vivo. Alkaloids content of melon seed reduced after cooking and this could imply positively on human subjects to consuming it (Kalu et al., 2011). Walnut contained high levels of flavonoids which are known for their analgestic, anti-microbial and antibacterial properties (Dreosti, 2000). The presence of tannins in cooked walnut confers astringent nature invaluable for the treatment of diarrhoea and dysentery (Dharmananda, 2003). Phytate concentration was more in walnut than melon seed which also increased significantly after cooking. The observed insignificant effect of cooking on tocopherol and ascorbic acid in melon seed was contrary to the report of Ejoh and Ketiku (2013). This could be due to the different processing methods. Walnut has higher ascorbic acid than melon indicating that walnut in raw and cooked forms could be useful as preservatives of dietary materials (Okonkwo and Ozoude, 2014). Vitamins have diverse biochemical functions, vitamin D have hormonal functions as regulators of mineral metabolism or regulator of cell and tissue growth. Provitamin A functions as an antioxidants for growth, while vitamin C and E are antioxidants which could be important in the prevention or mitigation of the formation of carcinogenic substances in diets (Hunt et al., 1980). Antioxidants repair free radical damages to the cells (Okaraonye and Ikewuchi, 2009). Therefore, the presence of antioxidant in relatively high concentration suggests that both seeds could be deployed as vitamin supplements to obviate in vivo oxidative stress conditions. Tocopherol concentration was higher in walnut than in melon seeds,

thus perhaps increasing the use of walnut in Southern Nigeria in ethno-medicine for male fertility (Ajaiyoba and Fadare, 2006).

Conclusion

Cooking lowered the phytochemical and vitamin compositions of walnut and melon seeds. Most of the antinutrients leached into cooking water. These low concentration of nutrients in both seeds were possitive indications of their potentialities as supplements for *in vivo* anti-oxidants as well as preservatives in feeds and foods.

References

- Abiodun, O. A. and Adeleke, R. O. 2010.

 Comparative studies of nutritional composition of four melon seeds varieties. *Pakistan Journal of Nutrition*. 9(9): 905-908.
- Achinewhu, S. C., Ogbonna, C. C. and Hart, A. D. 1995. Chemical composition of indigenous wild herbs, spices, fruits, nuts and leafy vegetables used as food. Plant Foods for Human Nutrition. Pp 48-52.
- Adebona, M. B., Ogunsua, A. O. and Ologunde, M. O. 1998.

 Development of conopphor nutbased cereal snack food-biscuits..

 Journal of Food and Africa; 2, 123-126.
- Adeyeye, E. I. 2010. Effect of cooking and roasting on that amino acid composition of raw groundnut (*Arachis hypogea*) seed. Acta Scientiarum Plonorum, Technology Alimentaria 9(2), 201-216.
- Adeniyan, O. O., Ibunkun, E. O., Ogunbolude, Y. and Eseigbe, M. I. 2013. Effect of boiling on the nutritional composition and antioxidant properties of Beni seed sesame (Sesamum indicum L). Food Science and Quality Management 11:39-48.

- Agte, V. V., Tarwadi, K. V., Mengale, S. and Chiplonkar, S. A. 2000. Potential of Indigenous green vegetables as natural sources for fortification of eight micronutrients. *Journal of Food composition Analysis.* 13:885-891.
- Ajaiyoba, E. O. and Fadara, D. A. 2006.

 Antimicrobial potential of extracts and fractions of walnut (Tetracarpidium conophorum).

 African Journal of Biotechnology. 5(22):2322-2325.
- Alkofahi, A., Batshoun, R., Owis, W. and Najib, N. 1996. Biological activity of some Jordanian plants extracts, *Fitoterapia*, 5, 435–42.
- Apeh, V. O., Agu, C. V., Ogugua, V. N., Uzoegwu, P. N., Anaduaka, E. G., Rex, T. E. and Agbalu, I. S. 2014. Effect of cooking on proximate, phytochemical consituents and haematological parameters of *Tetracarpidium conophorum* in male albino rats. *European Journal of Medicinal Plants*. 4(12):1388-1399.
- Association of official Analytical Chemists. 2000. Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA.
- Association of official Analytical Chemists 1990. American official chemists methods, Washinton, USA...
- Ayoola, P. B., Adeyeye, A., Onawunmi, O. O. and Faboya, O. O. P. 2011. Chemical evaluation and nutritive value of *Tetracarpidium conophorum* (Nigeria walnut) seeds. *Journal of Pharmaceutical of Biomedical Science*. 11(15):1-5.
- Bogert, J. L., Briggs, G. M. and Galloway, G. H. 1994. Nutrition and Physical Fitness. International Journal Food Science. Nutrition.45:223-230 (Citrullus

- lanatus). Prime Journal of Microbiology Research. 2(3):99-104.
- Braide, W., Odiong, I. J. and Oranusi, S. 2012. Phytochemical and Antibacterial properties of the seed of water melon (Citrullus lanatus). Prime Journal of Microbiology Research. 2(3):99-104.
- Dar, A. I., Saxena, R. C., Bansal, S. K., Matadeen, B. and Saxena, R. 2012. Protective effect of Citrullus colocynthis L. against polluted water induced hepatotoxicity in albino rats, International Journal of Biological and Pharmaceutical Research. 3(2):240-243.
- Dharmananda, S. (2003). Gallnuts and the uses of Tannins in Chinese Medicine. In: Proceedings of Institute for Traditional Medicine, Portland, Oregon.
- Dreosti, I. E. 2000. Recommended dietary intake levels for phytochemicals. *Asia Pacific Journal of Clinical Nutrition*. 9: 119-122.
- Edem, C. A., Dosunmu, I., Miranda and Bassey Frrancesa, I. 2009. Determination of proximate compostion, ascorbic acid and heavy metal content of African walnut (Tetracarpidium conophorum). Pakistiani Journal of Nutrition, 8: 225-226.
- Ejoh, S. I. and Ketiku, O. A. 2013. Vitamin E content of traditionally processed products of two commonly consumed oilseeds- Groundnut (*Arachis Hypogea*) and Melon seed (*Citrillus Vulgaris*) in Nigeria. *Journal Nutrition Food Science* 3: 187.
- Elinge, C. M., Muhammad, A., Atiku, F. A., Itodo A. U., Peni, I. J., Sanni, O. M. and Mbongo, A. N. (2012). Proximate, Mineral and Antinutritional Composition of Pumpkin

- (Cucurbitapepo L.) Seeds Extracts. International Journal of Plant Research. 2(5):146-150.
- Eugene, N. O., Ernest, A. A. and Micheal, O. M. 2015. Effect of heat processing on the proximate compostion and energy values of African walnut (Plukenetia conophora) and (Canarium Schweinfurthii). International Journal of Scientific and Technology Research, 4(8), 38, ISSN 2277-8616.
- Gafar, M. K. and Itodo, A. U. 2011.

 Proximate and mineral composition of hairy indigo leaves. Electronic Journal of Environmental, Agricultural and Food Chemistry (EJEAFChe), 10(3): 2007-2018.
- Hunt, S., Goff, J. L. and Holbrook, J. 1980. Nutrition Principles and Chemical Practices. John Wiley and Sons. New York.
- **Ige, M. M., Ogunsua, A. A. and Oke, O. L. 1984.** Functional properties of the proteins of some Nigerian oil seeds, conophor seeds and three varieties of melon seeds. *Journal of Agriculture and Food Chemistry*, 32: 822-825.
- Jackson, B. A., Adamade, C. A., Azogu, I. I. and Oni, K. C. 2013. Melon pod fermentation and its effects on physiochemical characteristics of melon seeds. Academic Journals 8(17): 664-669.
- Jacob, A. G., Etong, D. I. and Tijjani, A. 2015. Proximate, Mineral and Antinutritiobal composition of melon (Citrullus lanatus) seed. British Journal of Research.. ISSN 2394-37183:2(5):142-151.
- Kachhawah, S. S., Jain, A., Biswal, B. and Patidar, S. 2016. Standardization protocol development of hydroalcoholic extract of fruits of Citrullus Colocynthis against antiarthritic activity, International Journal of Green Pharmacy, (1), 59-

- 62.
- Kalu, F. N., Ogugua, V. N. I., Ujowumbi, C. O., Chinekeokwu, C. R. K. 2011. Chemical Composition and Aluta Toxicity Studies on the Aqueous Extract of Combretum Dolichopentalum Leaf in Swiss Albino Mice. Journal Chemistry Science Research. 1, 18.
- Latha, P. G., Suja, S. R., Abraham, A., Rajasekharan, S. and Panikkar, K. R. 2003. Hepatoprotective effects of *Ixora coccinea* flower extract in rats. *Journal of Tropical Medicininal Plants*. (41): 33-38
- **Liu, R. H. 2004**. Potential Synergy of Phytochemicals in cancer prevention, mechanism of action: *Journal of Nutrition* 134:3475.
- Manika, M., Vani. P. and Rajinder, K. G. (2015). Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (*Cucumis melo*) and water melon (*Citrullus lanatus*) and nutritional analysis of their respective oils. *Journal of Pharmacognosy and Phytochemistry* .3(6):98-102.
- **Mateljan, G. 2015**. The world's healthcost foods. www.whfoo.com retrieved on 11/4/16.
- McDonald, S, Prenzler, P. D., Antolovich, M., and Robards, K. 2001. Phenolic content and antioxidant activity of olive extract. Food chemistry 73:73-84.
- Nwaoguikpe, R. N., Ujowundu, C. O. and Wesley, B. 2012. Phytochemical and Biochemical Compostions of African walnut (*Tetracapidium conophorum*). *Journal of Pharmaceutical and Biomedical Sciences*. 20(9):1-4.
- Obadomi, B. O. and Ochuko, P. O. 2001.

 Phytochemical studies and efficacy of crude extracts of some homeostatic

- plants in Edo and Delta State of Nigeria. *Global Journal of Pure and Applied Science.*;8:203-208.
- Ogbonna, P. E. and Obi, I. U. 2007. Effect of time of planting and poultry manuapplication on growth and yield of melon (Colocynthis citrullus L) in derived savannah agroecology. Journal of Agriculture, Food, Environment and Extension Volume; 6 (2):33-39.
- Ogunsua, A. O. and Adegbona, M. B. 1993. Chemical composition of *Tetracarpidium Conophor*. Food Chem., 10, 173.177
- Ojieh, G. C., Oluba, O. M., Ogunlowo, Y. R., Adebisi, K. E., Eidangbe, G. O. and Orole, R. T. 2008. Compositional studies of Egusi melon seed (Colocynthis citrullus L). The internet Journal of Nutrition and Wellness. Volume; 6(1):1-5.
- Okaraonye, C. C. and Ikewuchi, J. C. 2009. Nutritional and antinutritional components of *Pennisetum purpureum* (schumach). Pakistan Journal Nutrition, 8(1): 32-34.
- **Okwu, D. E. 2004**. Phytochemical and Vitamin content of indigenous spices of South Eastern *Nigerian.Journal of Sustainable Agricultural and Environment* 1:30-37.
- Okwu, D. E. 2005. Phytochemicals, vitamins and mineral contents of two Nigerian medicinal plants. International Journal of Molecular Medicines and Advanced Sciences. Chemistry. 1(4):375-80.
- Okwu, D. E. and Josiah, C. 2006. Evaluation of chemical compound of two Nigerian medicinal plant. Africa *Journal of Biotechnology*. *Vol.*5(4):357-361.
- Okonkwo, C. O. and Ozounde, U. J. 2014. The impact of processing on the nutrient content, vitamin and mineral composition of walnut

- (Tetracarpidium Conophorum).International Journal of Novel Research in Life Sciences. Vol.1(2),pp;(10-16)
- Oloko, S. A. and Agbetoye, L. A. S. 2006.

 Development and Performance
 Evaluation of Melon Depodding
 Machine
- Oluba, M. O., Ogunlowo, Y. R., Ojieh, G. C., Adebisi, K. E., Eidangbe, G. O. and Isiosio, I. O. 2008. Physicochemical properties and fatty acid composition of *Citrullus lanatus* (Egusi melon) seed oil, *Journal of Biological Science*, (8):814–817
- SAS Institute, Inc. 2002. SAS language: Reference (Version 6, 1st ed.). SAS Institute Inc., Cary, North Carolina, USA.
- Soetan, K. O. 2008. Pharmacological and other beneficial effects of antinutritional factors in plants. A Revision of African Journal Biotechnology 4713-4721.
- Soetan, K. O. and Oyewole, O. E. 2009. The need for adequate processing to reduce the anti-nutritional factors in animal feeds: A review. African Journal of Food Science. Vol.3(9):223-232.
- **Sofowora, A. 1993**. Medicinal Plants and Traditional Medicine in Africa. Ibadan.SpectrumBookLtd.:55-71.
- Wheeler, E. L. and Ferrel, R. E. 1971. A method for Phytic acid determination in wheat fractions, cereal chemistry.48:312-320.
- Zenk, H. M. 1991. Chasing the enzymes of secondary metabolism: Plant cell cultures as a pot of goal. Phytochemistry.;30:3861-3863.

Received: 10th June, 2020 Accepted: 29th September, 2020